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In this section, we provide relevant implementation details; note that all code will be made available
upon publication. In particular, we provide:
(D.1) Training details across datasets (VOC + COCO + Waterbirds).
(D.2) Implementation details for twice-differentiable B-cos models.
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Given the large amount of experimental results, in each of the preceding sections we show only a
sub-selection of those results for improved readability. In section X, we provide the full results across
datasets, models, layers, experiments, and metrics, to peruse at the reader’s convenience.



A. Additional Qualitative Results (VOC and COCO)

A.1. Qualitative Examples Across Losses, Attribution Methods, and Layers

In Figs. A1 and A2, we visualize attributions across losses, attribution methods, and layers for the same set of examples
from the VOC and COCO datasets respectively. As discussed in the main paper, we make the following observations.

First, when guiding models at the final layer, we observe a marked improvement in the granularity of the attribution maps
for all losses (R5), except for PPCE, for which we do not observe notable differences. The improvements are particularly
noticeable on the COCO dataset (Fig. A2, “Final” column), in which the objects tend to be smaller. E.g., when looking at the
airplane image (last row per model), we observe much fewer attributions in the background after applying model guidance.

Second, as the L1 loss optimizes for uniform coverage within the bounding boxes, it provides coarser attributions that tend
to fill the entire bounding box (cf. R3). This can be observed particularly well for the large objects from the VOC dataset:
e.g., whereas models trained with the Energy and the RRR loss highlight just a relatively small area within the bounding box
of the cat (Fig. A1, ”Final” column, third row), the L1 loss yields much more distributed attributions for all models.

Third, at the input layer, the B-cos models show the most notable qualitative improvements (cf. R4). In particular, although
the X -DNN models show some reduction in noisy background attributions (e.g. last rows in Fig. A1c and Fig. A2c), the
attributions remain rather noisy for many of the images; for the Vanilla models, the improvements are even less pronounced
(Fig. A1b, Fig. A2b). The B-cos models, on the other hand, seem to lend themselves better to such guidance being applied to
the attributions at the input layer (Fig. A1a, Fig. A2a) and the resulting attributions show much more detail (Energy + RRR)
or an increased focus on the entire bounding box (L1). Especially with the Energy, the B-cos models are able to clearly focus
on even small objects, see Fig. A2a.

For additional results from both the VOC as well as the COCO dataset, please see Fig. A3.
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(a) B-cos ResNet-50.
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(b) Vanilla ResNet-50.
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(c) X -DNN ResNet-50.

Fig. A1: Qualitative examples from the VOC dataset. In particular, this figure allows to compare between models (major rows, i.e. (a),
(b), and (c)) losses (major columns) and layers (left+right) for multiple images (minor rows).
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(a) B-cos ResNet-50.
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(b) Vanilla ResNet-50.
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(c) X -DNN ResNet-50.

Fig. A2: Qualitative examples from the COCO dataset. In particular, this figure allows to compare between models (major rows, i.e. (a),
(b), and (c)) losses (major columns) and layers (left+right) for multiple images (minor rows).



Additional qualitative examples.
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Fig. A3: Qualitative examples from the VOC (left) and COCO (right) datasets. In particular, here we just show additional examples
for the B-cos models with input attributions, as this configuration exhibits the most detail. We show results for such models trained with
different losses (columns) for multiple images (rows).



A.2. Additional visualizations for training with coarse bounding boxes

In this section, we show more detailed and additional examples of models trained with coarser bounding boxes, i.e. with
bounding boxes that are purposefully dilated during training by various amounts (10%, 25%, or 50%), see Fig. A4. In
accordance with our findings in the main paper (cf. R8), we observe that the Energy loss is highly robust to such ‘annotation
errors’: the attribution maps improve noticeably in all cases (compare the Energy row with the respective baseline result). In
contrast, the L1 loss seems more dependent on high-quality annotations, which we also observe quantitatively, see Fig. B8.
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Fig. A4: Qualitative examples of the impact of using coarse bounding boxes for guidance. We show examples of B-cos attributions
from the input layer on the baseline model and on models guided with the Energy and L1 localization losses with varying degrees of
dilation {10%, 25%, 50%} in bounding boxes during training. For each example (block in the figure), we show the image and bounding
boxes with varying degrees of dilation (top row), attributions with the L1 localization loss (middle row), and attributions with the Energy
localization loss (bottom row). We find that in contrast to using the L1 localization loss, guidance with Energy localization loss maintains
localization of attributions to on-object features even with dilated bounding boxes. Note that bounding boxes are dilated only during
training, not during evaluation. Bounding boxes in light blue show the extent of dilation that would have been used had the image been
from the training set, while those in dark blue show undilated bounding boxes that are used during evaluation.



B. Additional Quantitative Results (VOC and COCO)

In this section, we provide additional quantitative results from our experiments on the VOC and COCO datasets. Specifi-
cally, in Sec. B.1, we show additional results comparing classification and localization performance. In Sec. B.2 we present
results for guiding models via GradCAM attributions. In Sec. B.3, we show that training at intermediate layers can be a
cost-effective way approach to performing model guidance. In Sec. B.4, we evaluate how well the attributions localize to
on-object features (as opposed to background features) within the bounding boxes, and find that the Energy outperforms other
localization losses in this regard. In Sec. B.5, we provide additional analyses regarding training with a limited number of
annotated images. Finally, in Sec. B.6, we provide additional analyses regarding the usage of coarse, dilated bounding boxes
during training.

B.1. Comparing Classification and Localization Performance

In this section, we discuss additional quantitative findings with respect to localization and classification performance
metrics (IoU, mAP) for a selected subset of the experiments; for a full comparison of all layers and metrics, please see
Figs. X1, X2, X3 and X4.

Additional IoU results. In Figs. B1 and B2, we show the remaining results comparing IoU vs. F1 scores that were not shown
in the main paper for VOC and COCO respectively. Similar to the results in the main paper for the EPG metric (Fig. 5), we
find that the results between datasets are highly consistent for the IoU metric.

In particular, as discussed in Sec. 5.1, we find that the L1 loss yields the largest improvements in IoU when optimized at
the final layer, see bottom rows of Figs. B1 and B2. At the input layer, we find that Vanilla and X -DNN ResNet-50 models
are not improving their IoU scores noticeably, whereas the B-cos models show significant improvements. We attribute this to
the noisy patterns in the attribution maps of Vanilla and X -DNN models, which might be difficult to optimize.

IoU results on VOC.
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Fig. B1: IoU results on PASCAL VOC 2007. We show IoU vs. F1 for all localization loss functions, attribution methods, and layers. In
contrast to the consistent improvements observed at the final layer with the L1 loss, the IoU metric only noticeably improves for the B-cos
models after model guidance. We attribute this to the high amount of noise present in the attribution maps of Vanilla and X -DNN models,
see e.g. Figs. A1 and A2. For results on the COCO dataset, please see Fig. B2.

Using mAP to evaluate classification performance. In all results so far, we plotted the localization metrics (EPG, IoU)
versus the F1 score as a measure of classification performance. In order to highlight that the observed trends are independent
of this particular choice of metric, in Fig. B3, we show both EPG as well as IoU results plotted against the mAP score.

In general, we find the results obtained for the mAP metric to be highly consistent with the previously shown results for
the F1 metric. E.g., across all configurations, we find the Energy to yield the highest gains in EPG score, whereas the L1 loss
provides the best trade-offs with respect to the IoU metric. In order to easily compare between all results for all datasets and
metrics, please see Figs. X1, X2, X3 and X4.



IoU results on COCO.
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Fig. B2: IoU results on MS COCO 2014. We show IoU vs. F1 for all localization loss functions, attribution methods, and layers. In
contrast to the consistent improvements observed at the final layer with the L1 loss, the IoU metric only noticeably improves for the B-cos
models after model guidance. We attribute this to the high amount of noise present in the attribution maps of Vanilla and X -DNN models,
see e.g. Figs. A1 and A2. For results on the VOC dataset, please see Fig. B1.

Mean Average Precision (mAP) results on VOC.
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(a) EPG vs. mAP.
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(b) IoU vs. mAP.

Fig. B3: Quantitative comparison of EPG and IoU vs. mAP scores for VOC. To ensure that the trends observed and described in the
main paper generalize beyond the F1 metric, in this figure we show the EPG and IoU scores plotted against the mAP metric. In general,
we find the results obtained for the mAP metric to be highly consistent with the previously shown results for the F1 metric, see e.g. Figs. 5
and 6. E.g., across all configurations, we find the Energy to yield the highest gains in EPG score, whereas the L1 loss provides the best
trade-offs with respect to the IoU metric. To compare between all results for all datasets and metrics, please see Figs. B3, X1, X2 and X4.



Comparison to GradCAM on VOC.
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Fig. B4: Quantitative results using GradCAM. We show EPG scores vs. F1 scores for all localization losses and models using GradCAM
at the final layer (bottom row) and compare it to the results shown in the main paper (top row). As expected, GradCAM performs very
similarly to IxG (Vanilla) and IntGrad (X -DNN) used at the final layer—in particular, note that for ResNet-50 architectures, IxG and
IntGrad are very similar to GradCAM for Vanilla and X -DNN models respectively (see Sec. B.2). Similarly, we find GradCAM to also
perform comparably to the B-cos explanations when used at the final layer; for IoU results and results on COCO, see Figs. X5 and X6.

B.2. Model Guidance via GradCAM

In Fig. B4, we show the EPG vs. F1 results of training models with GradCAM applied at the final layer on the VOC dataset;
for IoU results and results on COCO, please see Figs. X5 and X6. When comparing between rows (top: main paper results;
bottom: GradCAM), it becomes clear that GradCAM performs very similarly to IxG / IntGrad / B-cos attributions on Vanilla
/ X -DNN / B-cos models. In fact, note that GradCAM is very similar to IxG and IntGrad (equivalent up to an additional
zero-clamping) for the respective models and any differences in the results can be attributed to the non-deterministic training
pipeline and the similarity between the results should thus be expected.

B.3. Model Guidance at Intermediate Layers

In Sec. 5, we show results for guidance on two ‘model depths’, i.e. at the input and the final layer. This corresponds to
the two depths at which attributions are typically computed, e.g. IxG and IntGrad are typically computed at the input, while
GradCAM is typically computed using final spatial layer activations. Following [S12], for a fair comparison we optimize
using each attribution methods at identical depths. For the final and intermediate layers in the network, this is done by treating
the output activations at that layer as effective inputs over which attributions are to be computed. As done with GradCAM
[S15], we then upscale the attribution maps to image dimensions using bilinear interpolation and then use them for model
guidance.

In Fig. B5, we show results for performing model guidance at additional intermediate layers: Mid1, Mid2, and Mid3.
Specifically, for the ResNet-50 models we use, these layers correspond to the outputs of conv2_x, conv3_x, and
conv4_x respectively in the ResNet nomenclature ([S4]), while the final layer corresponds to the output of conv5_x.
We find that the EPG performance at these intermediate layers through the network follows the trends when moving from the
input to the final layer. Similar results for IoU can be found in Fig. X8.

B.4. Evaluating On-Object Localization

The standard EPG metric (Eq. (2)) evaluates the extent to which attributions localize to the bounding boxes. However,
since such boxes often include background regions, the EPG score does not distinguish between attributions that focus on the
object and attributions that focus on such background regions within the bounding boxes.

To additionally evaluate for on-object localization, we use a variant of EPG that we call On-object EPG. In contrast to
standard EPG, we compute the fraction of positive attributions in pixels contained within the segmentation mask of the object
out of positive attributions within the bounding box. This measures how well attributions within the bounding boxes localize
to the object, and is not influenced by attributions outside the bounding boxes. A visual comparison of the two metrics is



EPG results for intermediate layers on VOC.
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Fig. B5: Intermediate layer results comparing EPG vs. F1. We compare the effectiveness of model guidance at varying network depths
(rows) for each attribution method and model (columns) across localization loss functions. For the B-cos model, we find similar trends at
all network depths, with the Energy localization loss outperforming all other losses. For the Vanilla and X -DNN models, the Energy loss
similarly performs the best, but we also observe improved performance across losses when optimizing at deeper layers of the network. Full
results can be found in Figs. X7 and X8.

shown in Fig. B6.

We find that the Energy localization loss outperforms the L1 localization loss both qualitatively (Fig. B6a) and quanti-
tatively (Fig. B6b) on this metric. This is explained by the fact that the L1 promotes uniformity in attributions across the
bounding box, giving equal importance to on-object and background features within the box. In contrast, the Energy loss only
optimizes for attributions to lie within the box, without any constraint on where in the box they lie. This also corroborates
our previous qualitative observations (e.g. Fig. 9).

B.5. Model Guidance with Limited Annotations

In Fig. B7, we show the impact of using limited annotations when training (Sec. 5.4) when optimizing with the Energy and
L1 localization losses for B-cos attributions at the input. We find that in addition to EPG, trends in IoU scores also remain
consistent even when using bounding boxes for just 1% of the the training images.



Evaluating on-object localization within bounding boxes.
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(a) Evaluating on-object localization within the bounding boxes: On-object EPG. In the standard EPG metric (middle column), we compute the fraction
of positive attributions within the bounding boxes. In other words, attributions within the bounding box (green region) positively impact the metric, while
attributions outside (blue region) negatively impact it. Since bounding boxes are coarse annotations and often include background regions, the standard
EPG does not evaluate how well attributions localize on-object features, e.g. the person in the figure. To measure this, we evaluate with an additional
Segmentation EPG metric (right column), where we compute the fraction of positive attributions in the bounding box that lie within the segmentation mask
of the object. Here, attributions within the segmentation mask (green region) positively impact the metric, and attributions outside the segmentation mask
and inside the bounding box (blue region) negatively impact it. Note that attributions outside the bounding box have no effect on Segmentation EPG. As
an example and to visualize qualitative differences between losses, in the bottom rows (L1, Energy), we show attributions for a B-cos model guided at the
input layer. As becomes clear, by employing a uniform prior on attributions within the bounding box, the L1 loss is effectively optimized to fill the entire
bounding box and thus to not only highlight on-object features. This can also be observed quantitatively, see e.g. Fig. B6b, right column.
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(b) On-object EPG results. We evaluate across models (columns) and layers (rows) for the Energy and L1 localization losses. As seen qualitatively (e.g.
Fig. 9), we find that the Energy loss is more effective than the L1 loss in localizing attributions to the object as opposed to background regions within the
bounding boxes. This is explained by the fact that the L1 loss promotes uniformity in attributions within the bounding box, and treats both on-object and
background features inside the box with equal importance, while the Energy loss only optimizes for attributions to lie within the bounding box without
placing any constraints on where they may lie, leaving the model free to decide which regions within the box are important for its decision.

Fig. B6: Evaluating on-object localization via EPG. We show (a) the schema for the on-object EPG metric and how it differs the standard
bounding box EPG metric, and (b) quantitative results on evaluating with on-object EPG.



Additional results for training with limited annotations
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Fig. B7: EPG and IoU scores for limited annotations. We show EPG vs. F1 (left) and IoU vs. F1 (right) for B-cos attributions at
the input when optimizing with the Energy and L1 localization losses, when using {1%, 10%, 100%} training annotations. We find that
model guidance is generally effective even when training with annotations for a limited number of images. While the performance slightly
worsens when using 1% annotations, using just 10% annotated images yields similar gains to using a fully annotated training set. Full
results can be found in Figs. X9 and X10.

B.6. Model Guidance with Noisy Annotations

Additional results for training with coarse bounding boxes
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(a) Vanilla ResNet-50 @ Final.
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(b) X -DNN ResNet-50 @ Final.

Fig. B8: Coarse bounding box results. We show the impact of dilating bounding boxes during training for the (a) Vanilla and (b) X -DNN
models. Similar to the results seen with B-cos models (Fig. 10), we find that the Energy localization loss is generally robust to coarse
annotations, while the effectiveness of guidance with the L1 localization loss worsens as the extent of coarseness (dilations) increases. Full
results in Fig. X11.

In Fig. B8, we additionally show the impact of training with coarse, dilated bounding boxes for IxG attributions on the
Vanilla model, and IntGrad attributions on the X -DNN model. Similar to the results seen with B-cos attributions (Fig. 10),
we find that the Energy localization loss is robust to coarse annotations, while the performance with L1 localization loss
worsens as the dilations increase.

B.7. Evaluation on DenseNet and ViT models

In Fig. B9, we evaluate the best performing configurations from our study, i.e. performing guidance using B-cos attribu-
tions at input, on additional model backbones, specifically DenseNet-121 and ViT-S. We find that the trends observed with
ResNet-50 models generalizes to these backbones, with the Energy loss yielding the highest gains for EPG, and the L1 loss
yielding the highest gains for IoU.
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Fig. B9: EPG and IoU vs. F1 on VOC for two additional B-cos architectures. We find that the trends observed in the main paper for a
B-cos ResNet-50 backbone (cf. Figs. 5 and 6, right columns) generalize to other backbone architectures. In particular, we find that the L1

loss yields the highest gains in IoU, whereas the Energy loss yields the highest gains in EPG, both for a DenseNet-121 and a ViT-S model.



C. Waterbirds Results

Conventional Setting Reversed Setting

Layer Loss G1 Acc G2 Acc G3 Acc G4 Acc Overall G1 Acc G2 Acc G3 Acc G4 Acc Overall

B-
co

s Input
Energy 99.2 (±0.1) 40.4 (±1.0) 56.1 (±4.0) 96.6 (±0.4) 71.2 (±0.1) 99.4 (±0.1) 70.2 (±2.1) 62.8 (±2.1) 96.5 (±0.6) 83.6 (±1.1)

L1 99.3 (±0.1) 37.0 (±0.8) 51.1 (±1.9) 97.2 (±0.3) 69.5 (±0.2) 99.3 (±0.3) 67.7 (±3.3) 58.8 (±5.0) 96.7 (±0.7) 82.2 (±0.9)

Final
Energy 99.3 (±0.1) 41.0 (±2.1) 53.1 (±0.8) 96.3 (±0.5) 71.1 (±0.9) 99.4 (±0.2) 70.1 (±3.1) 60.2 (±3.9) 95.8 (±1.1) 83.2 (±1.1)

L1 99.3 (±0.1) 34.3 (±3.2) 49.4 (±2.6) 96.6 (±0.6) 68.2 (±1.1) 99.4 (±0.1) 69.8 (±2.1) 56.3 (±1.8) 96.1 (±0.7) 82.8 (±0.8)

Baseline 99.4 (±0.1) 37.2 (±0.2) 43.4 (±2.4) 96.5 (±0.1) 68.7 (±0.2) 99.4 (±0.1) 62.8 (±0.2) 56.6 (±2.4) 96.5 (±0.1) 80.1 (±0.2)

X
-D

N
N Input

Energy 99.3 (±0.2) 47.0 (±9.1) 49.2 (±4.8) 96.8 (±0.7) 73.1 (±3.4) 99.0 (±0.3) 67.6 (±4.8) 63.9 (±3.6) 96.1 (±0.7) 82.6 (±2.0)

L1 99.1 (±0.6) 40.4 (±7.3) 41.8 (±3.8) 96.5 (±0.6) 69.6 (±3.2) 99.3 (±0.2) 59.1 (±4.7) 63.6 (±6.1) 96.0 (±0.9) 79.3 (±1.3)

Final
Energy 99.2 (±0.4) 42.5 (±10.4) 54.2 (±3.2) 96.6 (±0.9) 71.9 (±4.2) 99.2 (±0.2) 65.3 (±2.0) 62.3 (±3.3) 96.0 (±0.5) 81.5 (±0.9)

L1 99.4 (±0.1) 45.1 (±4.0) 42.8 (±2.8) 96.5 (±0.5) 71.7 (±1.4) 99.3 (±0.2) 62.9 (±4.8) 59.8 (±4.8) 95.8 (±0.7) 80.4 (±1.8)

Baseline 99.3 (±0.1) 39.8 (±0.7) 38.6 (±2.5) 96.3 (±0.7) 69.1 (±0.6) 99.3 (±0.1) 60.2 (±0.7) 61.4 (±2.5) 96.3 (±0.7) 79.6 (±0.5)

Va
ni

lla

Input
Energy 99.4 (±0.2) 42.4 (±2.6) 47.9 (±3.5) 97.1 (±0.4) 71.2 (±1.0) 99.6 (±0.2) 50.7 (±7.3) 52.4 (±1.7) 97.2 (±0.5) 75.1 (±2.9)

L1 99.5 (±0.1) 46.1 (±4.4) 51.1 (±4.0) 97.5 (±0.1) 73.1 (±1.6) 99.6 (±0.1) 48.0 (±7.8) 49.7 (±3.7) 96.8 (±0.6) 73.7 (±2.7)

Final
Energy 99.5 (±0.0) 56.1 (±7.0) 60.7 (±5.5) 97.0 (±0.5) 78.1 (±2.6) 99.5 (±0.1) 59.4 (±5.9) 56.5 (±3.7) 97.2 (±0.5) 78.9 (±1.9)

L1 99.5 (±0.1) 57.1 (±2.9) 55.4 (±2.5) 96.7 (±0.6) 77.8 (±1.0) 99.5 (±0.1) 56.3 (±6.7) 51.6 (±3.1) 97.3 (±0.6) 77.1 (±2.5)

Baseline 99.4 (±0.0) 39.6 (±0.7) 53.7 (±2.1) 97.7 (±0.0) 70.8 (±0.0) 99.4 (±0.0) 60.4 (±0.7) 46.3 (±2.1) 97.7 (±0.0) 78.1 (±0.1)

Table C1: Classification performance on Waterbirds after model guidance with the L1 and the Energy loss. We find that both losses
consistently improve the models’ classification performance over the baseline model (i.e. a model without guidance). These improvements
are particularly pronounced in the groups not seen during training, i.e. landbirds on water (“G2”) and waterbirds on land (“G3”). For
qualitative visualizations of the effect of model guidance on the waterbirds dataset, see Fig. C1.

As discussed in section Sec. 5.5, we use the Waterbirds-100 dataset [S48, S11] to evaluate the effectiveness of model
guidance in a setting where strong spurious correlations are present in the training data. This dataset consists of four groups—
Landbird on Land (G1), Landbird on Water (G2), Waterbird on Land (G3), and Waterbird on Water (G4)—of which only
groups G1 and G4 appear during training and the background is thus perfectly correlated with the type of bird (e.g. Landbird
on land).

To evaluate the effectiveness of model guidance, we train the models on two binary classification tasks: to classify the type
of birds (the conventional setting) or the background (the reversed setting, as described in [S11]) and evaluate models without
guidance (baselines), as well as with guidance: specifically, for guiding the models, we evaluate different models (Vanilla,
X -DNN, B-cos) with different guidance losses (Energy, L1) applied at different layers (Input and Final), see Tab. C1. For
each model, we use its corresponding attribution method, i.e. IxG for Vanilla, IntGrad for X -DNN, and B-cos for B-cos.

In Tab. C1 we present the classification performance for the individual groups (G1-G4) as well as the average over all
samples (‘Overall’) across all configurations; note that the group sizes differ in the test set and the average over the individual
group acccuracies thus differs from the overall accuracy. For each row, the results are averaged over 4 runs (2 random training
seeds and 2 different sets of 1% annotated samples) with the exception of the baseline results being an average over 2 runs.

In almost all cases, we find that both of the evaluated losses (Energy, L1) improve the models’ classification performance
over the baseline. As expected, these improvements are particularly pronounced in the groups not seen during training, i.e.
landbirds on water (G2) and waterbirds on land (G3).

Further, in Fig. C1, we show attribution maps of the baseline models, as well as the guided models. As can be seen, model
guidance not only improves the accuracy, but is also reflected in the attribution maps: e.g., in row 1 of Fig. C1a, we see that
while the baseline model originally focused on the background (water) to classify the image, it is possible to guide the model
to use the desired features (i.e. the bird in conventional setting and the background in the reversed setting) and consequently
arrive at the desired classification decision. As this guidance is ‘soft’, we also observe cases in which the model still focused
on the wrong feature and thus arrived at the wrong prediction: e.g. in Fig. C1b row 1 (reversed setting), the Energy-guided
model still focuses on the bird and thus incorrectly predicts ‘Water’, similar to the L1-guided model in row 4.



Additional qualitative results on the Waterbirds-100 dataset.
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Fig. C1: Qualitative results for the Waterbirds dataset. Specifically, we show input layer attributions for B-cos models trained without
guidance (‘Baseline’) as well as guided via the Energy or L1 loss. We find that model guidance can be effective both for focusing on the
bird and the background. For example, in the top row of (a), the model originally focuses on the background (col. 2) and classifies the
image (col. 1) as Water/Waterbird. In the conventional setting, both the Energy and L1 localization losses are effective in redirecting the
focus to the bird (cols. 3-4), changing the model’s prediction to Landbird with high confidence. Similarly, in the reversed setting, both
localization losses direct the focus to the background (cols. 5-6), which increases the model’s confidence in classifying the image as Water.



D. Implementation Details

D.1. Training and Evaluation Details

Implementations: We implement our code using PyTorch4 [S10]. The PASCAL VOC 2007 [S3] and MS COCO 2014 [S8]
datasets and the Vanilla ResNet-50 model were obtained from the Torchvision library5 [S10, S9]. Official implementations
were used for the B-cos6 [S2] and X -DNN7 [S5] networks. Some of the utilities for data loading and evaluation were derived
from NN-Explainer8 [S16], and for visualization from the Captum library9 [S7].

D.1.1 Experiments with VOC and COCO

Training baseline models: We train starting from models pre-trained on ImageNet [S13]. We fine-tune with fixed learning
rates in {10�3, 10�4, 10�5} using an Adam optimizer [S6] and select the checkpoint with the best validation F1-score. For
VOC, we train for 300 epochs, and for COCO, we train for 60 epochs.

Training guided models: We train the models jointly optimized for classification and localization (Eq. (1)) by fine-tuning the
baseline models. We use a fixed learning rate of 10�4 and a batch size of 64. For each configuration (given by a combination
of attribution method, localization loss, and layer), we train using three different values of �loc, as detailed in Tab. D1. For
VOC, we train for 50 epochs, and for COCO, we train for 10 epochs.

Selecting models to visualize: As described in Sec. 4, we select and evaluate on the set of Pareto-dominant models for each
configuration after training. Each model on the Pareto front represents the extent of trade-off made between classification
(F1) and localization (EPG) performance. In practice, the ‘best’ model to choose would depend on the requirements of the
end user. However, to evaluate the effectiveness of model guidance (e.g. Figs. 1, 2 and 9), we select a representative model
on the front whose attributions we visualize. This is done by selecting the model with the highest EPG score with an at most
5 p.p. drop in F1-score.

Efficient Optimization: As described in Sec. 3.5, for each image in a batch, we optimize for localization of a single class
selected at random. This approximation allows us to perform model guidance efficiently and keeps the training cost tractable.
However, to accurately evaluate the impact of this optimization, we evaluate the localization of all classes in the image at test
time.

Training with Limited Annotations: As described in Sec. 5.4, we show that training with a limited number of annotations
can be a cost effective way of performing model guidance. In order to maintain the relative magnitude of Lloc as compared
to Lclass in this setting, we scale up the values of �loc when training. The values of �loc we use are shown in Tab. D2.

D.1.2 Experiments with Waterbirds-100

Data distributions: The conventional binary classification task includes classifying Landbird from Waterbird, irrespective
of their backgrounds. We use the same splits generated and published by [S11]. As discussed in Sec. C, at training time
there are no samples from G2 or G3, making the bird type and the background perfectly correlated. In contrast, both the
validation and test sets are balanced across foregrounds and backgrounds, i.e. a landbird is equally likely to occur on land
or water, and vice-versa. However, as noted by [S14], using a validation set with the same distribution as the test set leaks
information on the test distribution in the process of hyperparameter and checkpoint selection during training. Therefore, we
modify the validation split to avoid such information leakage; in particular, we use a validation set with the same distribution
as the training set, and only use examples of groups G1 and G4. Note that Tab. 1 refers to G3 as the “Worst Group”.

Training details: We train starting from models pre-trained on ImageNet [S13]. We fine-tune with fixed learning rate of
10�5 with �loc of 5⇥ 10�2 (5⇥ 10�4 ⇥ 100 for using 1% of annotations) using an Adam optimizer [S6] . We train for 350

4https://github.com/pytorch/pytorch
5https://github.com/pytorch/vision
6https://github.com/B-cos/B-cos-v2
7https://github.com/visinf/fast-axiomatic-attribution
8https://github.com/stevenstalder/NN-Explainer
9https://github.com/pytorch/captum

https://github.com/pytorch/pytorch
https://github.com/pytorch/vision
https://github.com/B-cos/B-cos-v2
https://github.com/visinf/fast-axiomatic-attribution
https://github.com/stevenstalder/NN-Explainer
https://github.com/pytorch/captum


Localization Loss Values of �loc

Energy 5⇥10�4, 1⇥10�3, 5⇥10�3

L1 1⇥10�3, 5⇥10�3, 1⇥10�2

PPCE 1⇥10�4, 5⇥10�4, 1⇥10�3

RRR* 5⇥10�6, 1⇥10�5, 5⇥10�5

Table D1: Hyperparameter �loc: Default training. used for when training on VOC and COCO with each localization loss. Different
values are used for different loss functions since the magnitudes of each loss varies.

Localization Loss Values of �loc

Energy 0.05, 0.100, 0.50

L1 0.01, 0.100, 1.00

Table D2: Hyperparameter �loc: Limited annotations. used for when training on VOC and COCO with limited data for each localization
loss. Different values are used for different loss functions since the magnitudes of each loss varies. We use larger values of �loc when
training with limited annotations to maintain the relative magnitudes of the classification and localization losses during training.

epochs with random cropping and horizontal flipping and select the checkpoint with the highest accuracy on the modified
validation set.

D.2. Optimizing B-cos Attributions

Training for optimizing the localization of attributions (Eq. (1)) requires backpropagating through the attribution maps,
which implies that they need to be differentiable. While B-cos attributions [S1] as formulated are mathematically differen-
tiable, the original implementation6 [S2] for computing them involves detaching the dynamic weights from the computational
graph, which prevents them from being used for optimization. In this work, to use them for model guidance, we develop a
twice-differentiable implementation of B-cos attributions.



X. Full Results

Full results on PASCAL VOC 2007 (F1 score).
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(a) EPG vs. F1.
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Fig. X1: EPG (a) and IoU (b) vs. F1 on VOC, for different losses (markers) and models (columns), optimized at different layers (rows);
additionally, we show the performance of the baseline model before fine-tuning and demarcate regions that strictly dominate (are strictly
dominated by) the baseline performance in green (grey). For each configuration, we show the Pareto fronts (cf. Fig. 4) across regularization
strengths �loc and epochs (cf. Sec. 5 and Fig. 4). We find the Energy loss to give the best trade-off between EPG and F1, whereas the L1

loss (especially at the final layer) provides the best trade-off between IoU and F1. We further find these results to be consistent across
datasets, see Fig. X2.



Full results on MS COCO 2014 (F1 score).
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(a) EPG vs. F1.
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(b) IoU vs. F1.

Fig. X2: EPG (a) and IoU (b) vs. F1 on COCO, for different losses (markers) and models (columns), optimized at different layers
(rows); additionally, we show the performance of the baseline model before fine-tuning and demarcate regions that strictly dominate (are
strictly dominated by) the baseline performance in green (grey). For each configuration, we show the Pareto fronts (cf. Fig. 4) across
regularization strengths �loc and epochs (cf. Sec. 5 and Fig. 4). We find the Energy loss to give the best trade-off between EPG and F1,
whereas the L1 loss (especially at the final layer) provides the best trade-off between IoU and F1. We further find these results to be
consistent across datasets, see Fig. X1.



Mean Average Precision (mAP) results on VOC.
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(a) EPG vs. mAP.
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(b) IoU vs. mAP.

Fig. X3: Quantitative comparison of EPG and IoU vs. mAP scores for VOC. To ensure that the trends observed and described in the
main paper generalize beyond the F1 metric, in this figure we show the EPG and IoU scores plotted against the mAP metric. In general,
we find the results obtained for the mAP metric to be highly consistent with the previously shown results for the F1 metric, see Fig. X1.
E.g., across all configurations, we find the Energy to yield the highest gains in EPG score, whereas the L1 loss provides the best trade-offs
with respect to the IoU metric. These results are further also consistent with those observed on COCO, see Fig. X4.



Full results on MS COCO 2014 (mAP).
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(a) EPG vs. mAP.
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(b) IoU vs. mAP.

Fig. X4: Quantitative comparison of EPG and IoU vs. mAP scores for COCO. To ensure that the trends observed and described in the
main paper generalize beyond the F1 metric, in this figure we show the EPG and IoU scores plotted against the mAP metric. In general,
we find the results obtained for the mAP metric to be highly consistent with the previously shown results for the F1 metric, see Fig. X2.
E.g., across all configurations, we find the Energy to yield the highest gains in EPG score, whereas the L1 loss provides the best trade-offs
with respect to the IoU metric. These results are further also consistent with those observed on VOC, see Fig. X3.



Comparison to GradCAM on VOC.
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Fig. X5: Quantitative results using GradCAM on VOC. We show EPG (a) and IoU (b) scores vs. F1 scores for all localization losses
and models using GradCAM at the final layer (bottom rows in (a)+(b) and compare it to the results shown in the main paper (top rows).
As expected, GradCAM performs very similarly to IxG (Vanilla) and IntGrad (X -DNN) used at the final layer—in particular, note that
for ResNet-50 architectures, IxG and IntGrad are very similar to GradCAM for Vanilla and X -DNN models respectively (see Sec. B.2).
Similarly, we find GradCAM to also perform comparably to the B-cos explanations when used at the final layer; for results on COCO, see
Fig. X6.



Comparison to GradCAM on COCO.
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Fig. X6: Quantitative results using GradCAM on COCO. We show EPG (a) and IoU (b) scores vs. F1 scores for all localization losses
and models using GradCAM at the final layer (bottom rows in (a)+(b) and compare it to the results shown in the main paper (top rows).
As expected, GradCAM performs very similarly to IxG (Vanilla) and IntGrad (X -DNN) used at the final layer—in particular, note that
for ResNet-50 architectures, IxG and IntGrad are very similar to GradCAM for Vanilla and X -DNN models respectively (see Sec. B.2).
Similarly, we find GradCAM to also perform comparably to the B-cos explanations when used at the final layer; for results on VOC, see
Fig. X5.



EPG results for intermediate layers on VOC.
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Fig. X7: Intermediate layer results comparing EPG vs. F1. We compare the effectiveness of model guidance at varying network depths
(rows) for each attribution method and model (columns) across localization loss functions. For the B-cos model, we find similar trends
at all network depths, with the Energy localization loss outperforming all other losses. For the Vanilla and X -DNN models, the Energy
loss similarly performs the best, but we also observe improved performance across losses when optimizing at deeper layers of the network.
Results for IoU can be found in Fig. X8.



IoU results for intermediate layers on VOC.
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Fig. X8: Intermediate layer results comparing IoU vs. F1. We compare the effectiveness of model guidance at varying network depths
(rows) for each attribution method and model (columns) across localization loss functions. We find similar trends across all configurations,
with the L1 loss outperforming all other losses. For the Vanilla and X -DNN models, we observe improved performance across losses when
optimizing at deeper layers of the network, whereas the results seem very stable for the B-cos models. For EPG results, see Fig. X7.



Limited annotations — Input layer
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(b) X -DNN ResNet-50
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(c) B-cos ResNet-50

Fig. X9: EPG and IoU scores for model guidance at the input layer with a limited number of annotations. We show EPG vs. F1
(left) and IoU vs. F1 (right) for all models, optimized with the Energy and L1 localization losses, when using {1%, 10%, 100%} training
annotations. We find that model guidance is generally effective even when training with annotations for a limited number of images.
While the performance slightly worsens when using 1% annotations, using just 10% annotated images yields similar gains to using a fully
annotated training set. Results at the final layer can be found in Fig. X10.



Limited annotations — Final layer
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(a) Vanilla ResNet-50
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(b) X -DNN ResNet-50
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(c) B-cos ResNet-50

Fig. X10: EPG and IoU scores for model guidance at the final layer with a limited number of annotations. We show EPG vs. F1
(left) and IoU vs. F1 (right) for all models, optimized with the Energy and L1 localization losses, when using {1%, 10%, 100%} training
annotations. We find that model guidance is generally effective even when training with annotations for a limited number of images. While
the performance worsens when using 1% annotations, using just 10% annotated images yields similar gains to using a fully annotated
training set. Results at the input layer can be found in Fig. X9.



Additional results for training with coarse bounding boxes
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(a) Vanilla ResNet-50 @ Final.

30

40

50

60

70

80

90

EP
G

Sc
or

e(
%

)

Dominated

D
om

in
at

in
g

Energy Loss
baseline 0% 10% 25% 50%

Dominated

D
om

in
at

in
g

L1 Loss
baseline 0% 10% 25% 50%

70 72 74
F1 Score (%)

25

35

44

54

64
Io

U
Sc

or
e(

%
)

Dominated

D
om

in
at

in
g

baseline 0% 10% 25% 50%

70 72 74
F1 Score (%)

Dominated

D
om

in
at

in
g

baseline 0% 10% 25% 50%

(b) X -DNN ResNet-50 @ Final.
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(c) B-cos ResNet-50 @ Input.

Fig. X11: Coarse bounding box results. We show the impact of dilating bounding boxes during training for the (a) Vanilla and (b)
X -DNN, and (c) B-cos models. Similar to the results seen with B-cos models (c), we find that the Energy localization loss is generally
robust to coarse annotations, while the effectiveness of guidance with the L1 localization loss worsens as the extent of coarseness increases.
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[S16] Steven Stalder, Nathanaël Perraudin, Radhakrishna Achanta, Fernando Perez-Cruz, and Michele Volpi. What You See is What You
Classify: Black Box Attributions. In NeurIPS, 2022.

https://github.com/pytorch/vision
https://github.com/pytorch/vision

