
A. Notation
For an image X ∈ R3×320×320, we represent the self-

supervised features of DINO [7] obtained for all 8 × 8 non
overlapping patches as F ∈ R384×40×40. We use L to de-
note loss functions. P(M) and E[M ] denote the distribution
and the expected value of the random variable M . 1{·} is
used to denote the indicator function.

For a graph, G = (V,E), V , and E denote the vertex
and edge set, respectively. W and A represent the adjacency
or affinity matrix for the LNcut in Section 3.2 and the GTV
losses in Section 3.3 respectively.

I denotes the identity matrix. D and L correspond to
the degree matrix and the Laplacian matrix for the graph G,
respectively. s : v ∈ V → s(v) ∈ R has been used to
denote a scalar signal as a function defined over the graph’s
nodes v ∈ V as the domain. The definition of S naturally
follows as S := [s(1), s(2), . . . , s(|V |)]T .

B. Architecture for Section 3
Section 3 describes the essential details of the SEMPART

architecture in which we emphasize the importance of two
vital learnable components: (a) the transformer encoder as
a shared parametrized module between both the coarse and
fine branch, (b) the convolutional mask refinement network
for generating high resolution fine masks. Figure 6 (a) and
(b) presents the transformer encoder as well as the convo-
lutional mask refinement network, respectively, in greater
detail. Furthermore, we also elaborate upon these individ-
ual modules in Appendix C.

C. Pseudocode for Section 3
SEMPART is a self-supervised multi-resolution image bi-

partitioning heuristic that successfully distills the encoded
information from DINO [7] towards high-quality unsuper-
vised semantically meaningful partitions that significantly
resonate with the notion of visual saliency for an image. In
this section, we elaborate upon the forward pass described
in Section 3.2 to Section 3.4 culminating in Algorithm 1.
DINO backbone [7]: DINO [7] is a widely adopted self-
supervised vision model which emits features that are con-
textually aware and captures the semantic richness of an
image (see [7, Figure 1]). SEMPART leverages the self-
supervised [7] ViT-s/8 transformer based on [15] from the
official implementation of DINO [7], which processes a
320×320 image X as a 40×40 positionally aware flattened
sequence of 8 × 8 non overlapping patches. We denote the
transformation by

DINO(X) : X ∈ R3×320×320 → F ∈ R384×40×40. (8)

Note that in fact DINO emits R384×(1+40×40), however we
discard the [CLS] token feature for subsequent modules.
In our implementation, the DINO backbone remains frozen.

Transformer encoder [15]: We apply a single layer trans-
former encoder2 with two attention heads that transform
F ∈ R384×40×40 to F̃ ∈ R64×40×40.

F̃ ← TRANSFORMERENCODER(F ). (9)

Emitted features F̃ are shared between both the SEMPART-
Coarse and SEMPART-Fine branches (see Figure 2).
Convolutional mask refinement network (Section 3.2):
As also done in [4], we define BLOCKin_ch

out_ch as

3× 3 CONVin_ch
out_ch → BATCHNORM → LEAKYRELU

(10)

where K ×K CONVin_ch
out_ch is a padded K ×K convolution

with stride = 1, in_ch and out_ch correspond to the num-
ber of input and output channels respectively. Before each
block, we also concatenate - denoted by the ||c operator - an
appropriately resized image along the channel dimension.

Consequently, our convolutional mask refinement net-
work is given by alternating bilinear UPSAMPLE and
BLOCK as follows

F̃ ′ ← BLOCK67
192

[
UPSAMPLE2×2

bilinear

(
F̃
)
||cX3×80×80

]
F̃ ′′ ← BLOCK195

128

[
UPSAMPLE2×2

bilinear

(
F̃ ′

)
||cX3×160×160

]
F̃ ′′′ ← BLOCK131

128

[
UPSAMPLE2×2

bilinear

(
F̃ ′′

)
||cX3×320×320

]
F̂ ← BLOCK128

128

(
F̃ ′′′

)
||cX3×320×320. (11)

The image X is provided as side information and is essen-
tial for conditioning the convolutional mask refinement net-
work towards generating fine masks driven by the LGTV-fine
loss. We modularize the complete convolutional mask re-
finement transformation given in (11) as follows,

F̂ ← CONVMASKREFINE(F̃ ,X). (12)

Coarse branch (Section 3.2): The coarse branch applies
a binary linear classification head (LCH) as a composi-
tion of a linear layer followed by sigmoid to F̃ , resulting
in Scoarse ∈ [0, 1]40×40.

Scoarse ← LCH64
1

(
F̃
)
. (13)

Here LCHin_ch
1 corresponds to

1× 1 CONVin_ch
1 → SIGMOID. (14)

We denote this operation as follows

Scoarse ← COARSEBRANCH(F̃ ). (15)

2Implementation is borrowed from [15].



Figure 6 Expanded overview of SEMPART: In addition to the details presented in Figure 2, we zoom in to the transformer encoder in Figure 6 (a) and the
convolutional mask refinement network in Figure 6 (b). BLOCK is as defined in (10).

Fine branch (Section 3.2): The fine branch involves the
composition of the TRANSFORMERENCODER features F̃
with convolutional mask refinement network in (12), which
produces F̂ . Along the lines of (13), a binary classification
head is subsequently applied as follows

Sfine ← LCH131
1

(
F̂
)

(16)

Here Sfine ∈ [0, 1]320×320 is the high resolution fine mask.
Therefore we denote the fine branch as

Sfine ← FINEBRANCH(X, F̃ ). (17)

where FINEBRANCH is given by

CONVMASKREFINE → LCH131
1 (18)

SEMPART (Section 3.4): The loss functions described in
Section 3.2 and Section 3.3 are motivated by graph-based
bi-partitioning of images based on deep semantic corre-
spondences between regions as well as driven by graph total
variation of the generated masks over the entire image. This

results in high-quality self-supervised masks based on prin-
ciples of normalized cut and guided super-resolution. We
compute the corresponding loss functions in Section 3.4 to
give us the eventual SEMPART loss in Algorithm 1.

The parameters of the transformer encoder, the convolu-
tional mask refinement network, and the two binary classifi-
cation heads are refined iteratively as per the loss LSEMPART.
Note that this is an entirely unsupervised scheme where the
DINO feature correspondences serve as the key source of
self-supervision.

D. Supplementary material for Section 4
Architecture ablation comparison. Figure 7 demonstrates
the architectural differences between SEMPART, and the ab-
lations we compare with. In particular, as discussed in Sec-
tion 4.4, we demonstrate the value of co-optimizing our
coarse and fine branches (see Figure 7 (a)) as compared
to only having the fine branch (see Figure 7 (c)) or having
both branches trained independently (see Figure 7 (b)). Re-

3Note that this involves an average pooling step for aligning the spatial
dimensions. See section on guided super-resolution in Section 3.2.



Figure 7 Comparison of SEMPART with ablations of its architecture in decreasing order of performance from (a) to (c) (see Table 4).

Algorithm 1 SEMPART

Input X ∈ R3×320×320 in RGB space
Output Loss LSEMPART

1: function LOSS(X)
2: F = DIN O(X)

3: F̃ = TRANSFORMERENCODER(F )

4: Scoarse = COARSEBRANCH(F̃ )

5: Sfine = FINEBRANCH(X, F̃ )
6: LNcut = LNcut(F, Scoarse) See (4)
7: LGTV-coarse = LGTV-coarse(F, Scoarse) See Section 3.3
8: LSR = LSR(Scoarse, Sfine)

3 See (5)
9: LGTV-fine = LGTV-fine(X,Sfine) See Section 3.3

10: Lcoarse = LNcut + λGTV-coarseLGTV-coarse

11: Lfine = λGTV-fineLGTV-fine
12: Ljoint = λSRLSR
13: LSEMPART = Lcoarse + Lfine + Ljoint See Section 3.4
14: return LSEMPART

15: end function

sults of the paired Wilcoxon signed-rank test [35] on the
IoU metric, shown in Table 5, confirm the value of architec-
tural choices, using significance level of 0.05.

As described in Section 4.4, Figure 7 (b) demonstrates
that normalized cut loss only affects the transformer en-
coder and the coarse branch. In contrast, the gradients from
the guided reconstruction only affect the fine branch. The

Method DUT-OMRON DUTS-TE ECSSD
w/o GTV coarse 0.646 (< 0.001) 0.749 (−) 0.848 (< 0.001)

w/o GTV fine 0.637 (< 0.001) 0.717 (< 0.001) 0.818 (< 0.001)

train fine mask directly 0.645 (< 0.001) 0.738 (< 0.001) 0.845 (< 0.001)

w/o joint training 0.662 (< 0.001) 0.743 (< 0.001) 0.849 (0.007)

SEMPART-Fine 0.668 0.749 0.855

Table 5 Ablations of SEMPART for saliency, using mIoU (p-value).

gradients from the corresponding GTV losses also only af-
fect the respective branches. In Figure 7 (c), however, the
coarse branch is completely discarded, and the fine branch
is utilized both for optimizing the expected normalized cut
loss as well as the corresponding LGTV-fine loss.

In our experiments (see Table 4), we observe that the per-
formance in terms of the mean IoU of unsupervised saliency
detection deteriorates consistently across all our evaluation
datasets as we go from Figure 7 (a) to (b) to (c). This aligns
with our intuition by demonstrating that not only is there
value in separately inferring a coarse mask using the coarse
branch, which effectively has the impact of a regularizer of
the TRANSFORMERENCODER, but it is also beneficial to
co-optimize the fine branch with the coarse branch.

Comparison with supervised methods. Table 6 compares
the performance of SEMPART with recent state-of-the-art
supervised methods [33, 58]. We show that using SEMPART
masks for SelfMask training results in high quality masks
outperforming the supervised U2-NET on DUT-OMRON
and DUTS-TE. However, a more recent supervised method



Method OMRON* D-TE* ECSSD
SEMPART-Fine 0.668 0.749 0.855
SEMPART-Fine† 0.673 0.755 0.857
SELFMASK on SEMPART-Fine 0.698 0.749 0.850
U2-NET[33] 0.693 0.733 0.878
SELFREFORMER[58] 0.744 0.830 0.900

†indicates that validation images were included during unsupervised training.
Table 6 We compare SEMPART variants with U2-NET and SELFRE-
FORMER both of which are supervised.

[58] still outperforms SEMPART by a significant margin.
We also observe that scaling the training set to also in-

clude the validation images improves the performance of
SEMPART, indicated by SEMPART-Fine†.

Comparison with alternate backbones. Our experiments
with alternate backbones in Table 7, indicates that the de-
gree of pixelation (DoP), defined as the ratio of patch to im-
age areas affects the performance. A larger ViT patch size
is detrimental, and SSL features with lower DoP result in
superior SEMPART saliency masks (Table 7 A, B vs. C, D).
Nevertheless, the fine mask always outperforms its accom-
panying coarse mask by preserving high-frequency details.

Backbone Arch Type Input DoP OMRON D-TE ECSSD
A.

DINOv2
(2023) ViT-S/14

Coarse 2242 3.9e-3 0.460 0.539 0.659
B. Fine 2242 3.9e-3 0.523 0.598 0.717
C. Coarse 5602 6.25e-4 0.554 0.671 0.773

D. Fine 5602 6.25e-4 0.57 0.686 0.796

E.

DINO
ViT-S/16

Coarse 3202 2.5e-3 0.573 0.640 0.766
F. Fine 3202 2.5e-3 0.596 0.656 0.793
G.

ViT-S/8
Coarse 3202 6.25e-4 0.640 0.727 0.837

H. Fine 3202 6.25e-4 0.668 0.749 0.855

Table 7 SEMPART IoU (last three columns) for DINOv2 and DINO.

Hyperparameter sensitivity analysis. Figure 8 (A.1, A.2)
show that the performance is typically robust to changes in
λSR and λGTV-coarse respectively. Figure 8 (A.3, B) show that
the performance suffers with low and high λGTV-fine values
due to jaggedness and over-smoothing respectively.

Additional results. Figure 9, Figure 10 and Figure 11
present additional results for both SEMPART-coarse and -
fine as well as also training SELFMASK+SEMPART-coarse
and -fine as compared to TokenCut, MOVE, and the ground
truth. The performance metrics in Table 1 indicate that the
average performance of additionally training SELFMASK
on SEMPART as pseudo masks results in an improvement of
3% and 3.5% in IoU and maxFβ respectively for the DUT-
OMRON dataset. At the same time, the gains are debatable
for DUTS-TE and, in particular, for ECSSD, for which the
performance deteriorates for the SELFMASK variant.

Across Figure 9, Figure 10, and Figure 11, the superi-
ority of SEMPART over MOVE and TokenCut is a prevalent
trend. As also seen previously in Figure 3, TokenCut, which
is optimized on a per image basis, not only results in coarse
masks that do not capture several high-frequency details but

Figure 8 Hyperparameter sensitivity analysis of SEMPART-Fine.

can also select the incorrect object more often than its coun-
terparts (see Figure 9 (I)) as well as under select the salient
region (see Figure 9 (D, H), Figure 11 (C)).

On the other hand, MOVE outperforms TokenCut by
generating more accurate and high-resolution masks based
on the perception of movability of foreground objects. This
heuristic outperforms previous state-of-the-art significantly,
as demonstrated in [4]. However, we find that in addition to
being noisy around the edges in most examples, it exhibits
noisy artifacts both inside (see Figure 9 (G), Figure 10 (A,
F), Figure 11 (B)) and outside (see Figure 9 (I), Figure 10
(E), Figure 11 (B, F))the visually salient regions. For the
most part, MOVE can identify at least one of the salient
objects. However, it seems likely that this heuristic also
results in the over-selection of artifacts distinctly separated
from the key salient object(s).

Compared to TokenCut and recent state-of-the-art
MOVE, our method SEMPART and its SELFMASK vari-
ants signify a superior heuristic for unsupervised image
bi-partitioning and a significantly better overlap with the
ground truth saliency masks across all datasets. We also
observe that the fine mask captures high-frequency details
more accurately, especially at image boundaries than the
corresponding jointly inferred coarse mask. The joint opti-
mization involved in the SEMPART architecture is valuable
towards image bi-partitioning without involving any post-
inference processing. Therefore the inference times are a
fraction of its counterparts and comparable with other meth-
ods that also learn a segmentation model, such as MOVE.



Figure 9 Additional examples on the DUT-OMRON [57] dataset.



Figure 10 Additional examples on the ECSSD [38] dataset.



Figure 11 Additional examples on the DUTS-TE [49] dataset.



Figure 12 Attention map of the transformer encoder [CLS] token. The SEMPART attention map aligns with the background.

Attention map. The TRANSFORMERENCODER in (9) is
further elaborated in Figure 6 (a). To get a better under-
standing of the reasoning process of SEMPART, we have
looked at the average attention map across both heads for
the [CLS] token of the TRANSFORMERENCODER in Fig-
ure 12. Interestingly we find that although the output of the
TRANSFORMERENCODER for this particular token is dis-
carded (see Figure 6 (a)), the corresponding attention map
is insightful. This is because the [CLS] token is attended
to by the remaining 40 × 40 patch tokens for generating F̃
in (9). Therefore, the underlying [CLS] embeddings get
leveraged for the F̃ output. In particular, the attention map
resonates with the background4. It reflects the clear distinc-
tion between an image’s salient and non-salient regions. On
the other hand, the DINO [CLS] token attention maps ap-
pear to attend to the foreground regions.

E. Ethical aspects

We benchmark our approach using publicly available
datasets [49, 57, 38, 17, 18, 27]. Although our approach
infers unsupervised partitions of images, SEMPART still in-
herits biases present in DINO [7], which was trained on Im-
ageNet [13] without labels and in a self-supervised manner.

4[42] adopted a heuristic that expands the mask from background seeds
located first.

F. Future applications
The merits of SEMPART in generating high-quality

masks at multiple resolutions can be particularly effective
when applied to class-aware object detection, such as in
[40]. More generally, SEMPART can also help improve
search and recommendation systems [50] in applications
where users seek to retrieve images of specific objects with
the underlying assumption that the object under considera-
tion will likely be prominent and in the foreground.

References
[1] Amit Aflalo, Shai Bagon, Tamar Kashti, and Yonina C. El-

dar. Deepcut: Unsupervised segmentation using graph neural
networks clustering. CoRR, abs/2212.05853, 2022. 2, 3, 4, 6

[2] William K. Allard. Total variation regularization for image
denoising, i. geometric theory. SIAM Journal on Mathemat-
ical Analysis, 39(4):1150–1190, 2008. 5

[3] Jonathan T. Barron and Ben Poole. The fast bilateral solver.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision - ECCV 2016 - 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part III, volume 9907 of Lecture Notes in Com-
puter Science, pages 617–632. Springer, 2016. 3, 4, 7

[4] Adam Bielski and Paolo Favaro. MOVE: unsuper-
vised movable object segmentation and detection. CoRR,
abs/2210.07920, 2022. 1, 2, 3, 4, 5, 6, 7, 8, 10, 13

[5] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li.
Salient object detection: A survey. CoRR, abs/1411.5878,
2014. 1, 2



[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 1,
3, 4

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In 2021
IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 9630–9640. IEEE, 2021. 1, 2, 3, 4, 5, 10, 17

[8] Mickaël Chen, Thierry Artières, and Ludovic Denoyer. Un-
supervised object segmentation by redrawing. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 12705–12716, 2019. 2

[9] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming
He. Improved baselines with momentum contrastive learn-
ing. CoRR, abs/2003.04297, 2020. 1, 3, 4

[10] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for seman-
tic segmentation. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 17864–17875, 2021. 3, 7

[11] Riccardo de Lutio, Alexander Becker, Stefano D’Aronco,
Stefania Russo, Jan D. Wegner, and Konrad Schindler.
Learning graph regularisation for guided super-resolution.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 1969–1978. IEEE, 2022. 2, 3, 4

[12] Riccardo de Lutio, Stefano D’Aronco, Jan Dirk Wegner, and
Konrad Schindler. Guided super-resolution as pixel-to-pixel
transformation. In 2019 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 8828–8836. IEEE,
2019. 2, 3, 4

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 17

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. CoRR, abs/1810.04805,
2018. 3

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image

is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 4, 10

[16] Vania Vieira Estrela, Hermes Aguiar Magalhaes, and Osamu
Saotome. Total variation applications in computer vision.
CoRR, abs/1603.09599, 2016. 5

[17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.
7, 8, 17

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.
7, 8, 17

[19] Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, and
Pieter Ghysels. Graph partitioning and sparse matrix order-
ing using reinforcement learning and graph neural networks.
Journal of Machine Learning Research, 23(303):1–28, 2022.
2, 3, 4

[20] Alice Gatti, Zhixiong Hu, Tess E. Smidt, Esmond G. Ng,
and Pieter Ghysels. Deep learning and spectral embedding
for graph partitioning. In Xiaoye S. Li and Keita Teranishi,
editors, Proceedings of the 2022 SIAM Conference on Paral-
lel Processing for Scientific Computing, PPSC 2022, Seattle,
WA, USA, February 23-26, 2022, pages 25–36. SIAM, 2022.
2, 3, 4

[21] Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah
Snavely, and William T. Freeman. Unsupervised seman-
tic segmentation by distilling feature correspondences. In
The Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net, 2022. 1, 3, 4

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Dollár, and Ross B. Girshick. Masked autoencoders
are scalable vision learners. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 15979–15988.
IEEE, 2022. 1, 2, 3, 4

[23] Xianxu Hou, Linlin Shen, Or Patashnik, Daniel Cohen-Or,
and Hui Huang. Feat: Face editing with attention, 2022. 5

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 6

[25] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In
John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-
nando C. N. Pereira, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Sys-
tems 2011. Proceedings of a meeting held 12-14 December
2011, Granada, Spain, pages 109–117, 2011. 3, 4

[26] John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. Conditional random fields: Probabilistic models for



segmenting and labeling sequence data. In Carla E. Brodley
and Andrea Pohoreckyj Danyluk, editors, Proceedings of the
Eighteenth International Conference on Machine Learning
(ICML 2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan Kaufmann,
2001. 3

[27] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312,
2014. 7, 8, 17

[28] Jiaming Liu, Yu Sun, Xiaojian Xu, and Ulugbek S. Kamilov.
Image restoration using total variation regularized deep im-
age prior. CoRR, abs/1810.12864, 2018. 5

[29] Tie Liu, Jian Sun, Nanning Zheng, Xiaoou Tang, and Heung-
Yeung Shum. Learning to detect A salient object. In 2007
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2007), 18-23 June 2007, Min-
neapolis, Minnesota, USA. IEEE Computer Society, 2007.
2

[30] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and
Andrea Vedaldi. Deep spectral methods: A surprisingly
strong baseline for unsupervised semantic segmentation and
localization. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 8354–8365. IEEE, 2022. 1, 2,
3, 8

[31] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and
Andrea Vedaldi. Finding an unsupervised image segmenter
in each of your deep generative models. In The Tenth In-
ternational Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. 1

[32] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José
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