Scale-MAE: Supplementary Material

1. Datasets

In our experiments, we used a total of ten datasets (Table 1) for the tasks of land-use/land-cover classification and semantic
segmentation. There are a large amount of remote sensing datasets in existence. Many remote sensing datasets fundamentally
capture the same data with minor changes in location or distribution. We selected datasets with key, representative properties.
These properties include (1) a diversity in the amount of kinds of classes/objects represented, (2) a large spectrum of ground
sample distances from (ideally) known sensor configurations, and (3) pansharpened, othrorectified, and quality controlled
imagery and labels. We capture these properties in Table 1.

1.1. Diversity in classes

For both pretraining and downstream evaluations, it is a desirable property to include as much geographic and class diversity
as possible. In order to capture a wide amount of classes in remote sensing, it is necessary to include multiple localities and
environments. This property serves as a proxy for the amount of unique “features” available in the dataset.

Dataset Resolution (px) GSD (m) Number of Images Number of Classes Task Type
AiRound [9] 500 0.3 - 4800 11,753 11 C
CV-BrCT [9] 500 0.3 - 4800 24,000 9 C
EuroSAT [8] 64 10 27,000 10 C

MLRSNet [10] 256 0.1-10 109,161 46 C
Optimal-31 [12] 256 05-8 1,860 31 C
RESISC-45 [3] 256 0.2-30 31,500 45 C
UC Merced [14] 256 0.3 2,100 21 C
WHU-RS19 [6] 256 0.5 1050 19 C
fMoW [4] Various 0.3 1,047,691 62 C
SpaceNet vl [11] Various 0.5 6,940 2 SS

Table 1. Statistics of all datasets used in our experiments. Task types are classification (C) and semantic segmentation (SS).

1.2. Spectrum of GSDs

Scale-MAE is built to be invariant to the input absolute scale of the dataset. Many datasets are collected from a single sensor
and processed in a uniform fashion. To validate that our method works with many resolutions, we included datasets which are
collected from a variety of sensors but then processed in a uniform fashion. This excludes differences in processing as a factor
affecting our experiments and narrowly targets resolution instead.

1.3. Quality control

It is hard to assess the quality of remote sensing datasets without manually verifying a majority of instances of the data.
We mandated that images used are pansharpened (and therefore the highest resolution possible to extract from the sensor),
orthorectified (and therefore well-aligned with the geodetic ellispoid), and projected to the same coordinate reference system.
This eliminates large differences in sensor-to-image processing.



| k=20 | k =100 | k=5 |
Dataset Res || Scale. Sat.  Conv. | Scale. Sat. Conv. | Scale. Sat. Conv. ||

16 || 0.401 0.375 0423 | 0396 0.367 0401 || 0370 0.355 0.403
32 0561 0.510 0.539 | 0.536 0.491 0.517 || 0.541 0.492 0.539
64 || 0.689 0.607 0.658 | 0.643 0.579 0.621 || 0.692 0.604 0.666

AiRound 128 || 0743 0.650 0.681 || 0.690 0.600 0.622 || 0.749 0.660 0.690
256 || 0729 0.662 0.658 || 0.678 0.621 0.602 | 0731 0.663 0.676

496 || 0.670 0.664 0.620 | 0.609 0.613 0566 || 0.685 0.669 0.632

16 || 0522 0478 0.567 || 0.485 0443 0513 || 0524 0475 0.585

32| 0.653 0615 0.656 || 0.588 0.560 0.592 | 0.695 0.644 0.699

CV-BrCT 64 || 0744 0701 0711 || 0.674 0635 0.644 | 0780 0.727 0.754

128 || 0.763 0.725 0.732 || 0.710 0.662 0.667 || 0.805 0.758 0.782
256 || 0.761 0.725 0.727 || 0.694 0.666 0.664 | 0.802 0.770 0.771
496 || 0.737 0.727 0.709 || 0.656 0.657 0.631 | 0.792 0.771 0.765

16 || 0.744 0.727 0.826 | 0.699 0.695 0.788 | 0.751 0.729 0.835
EuroSAT 32 0901 0.876 0.898 || 0.869 0.854 0.863 || 0.912 0.871 0.909
64 || 0956 0.931 0940 | 0.935 0913 0914 || 0.960 0.934 0.947

16 || 0.563 0491 0.607 | 0.535 0.461 0.549 || 0.551 0479 0.617
32 || 0772 0.677 0.744 | 0.726 0.625 0.688 || 0.772 0.684 0.762
MLRSNet 64 || 0.893 0.815 0.851 || 0.849 0.754 0.792 || 0911 0.839 0.876
128 || 0936 0.875 0.894 | 0.892 0.814 0.834 || 0.950 0.899 0918
256 || 0918 0.892 0.882 | 0.862 0.840 0.817 || 0940 0913 0910

16 || 0.354 0322 0.439 || 0312 0.298 0.370 || 0.317 0.319 0.418
32 | 0.574 0.500 0.587 || 0.567 0.508 0.545 || 0.565 0.519 0.561
OPTIMAL-31 64 || 0.793 0.609 0.698 || 0.742 0.561 0.598 || 0.782 0.646 0.688
128 || 0.816 0.670 0.714 | 0.731 0.646 0.595 || 0.809 0.694 0.725
256 || 0.739 0.681 0.646 || 0.653 0.638 0.550 || 0.761 0.731 0.693

16 || 0.382 0347 0.458 || 0370 0.327 0.428 || 0.353 0323 0.435
32 || 0.628 0.527 0.601 | 0.597 0.505 0.568 || 0.609 0.508 0.592
RESISC 64 || 0.798 0.667 0.731 || 0.754 0.631 0.677 || 0.803 0.667 0.734
128 || 0.864 0.748 0.798 | 0.819 0.699 0.743 || 0.882 0.762 0.817
256 || 0.826 0.758 0.762 || 0.761 0.708 0.690 || 0.850 0.771 0.788

16 || 0.524 0.472 0.598 || 0400 0.370 0.462 | 0.512 0.488 0.617
32 | 0.767 0.670 0.683 || 0.605 0.535 0.593 || 0.828 0.682 0.726
UC Merced 64 || 0842 0.795 0.771 || 0.719 0.729 0.652 || 0.884 0.842 0.845
128 || 0.858 0.788 0.750 | 0.662 0.738 0.655 | 0.884 0.847 0.838
256 || 0.762 0.802 0.700 || 0.595 0.757 0.590 | 0.851 0.842 0.817

16 || 0.545 0.445 0.576 || 0.400 0.380 0.562 | 0.525 0.490 0.631
32 || 0.650 0.729 0.670 | 0.610 0.675 0.576 || 0.760 0.690 0.754
WHU-RS19 64 || 0.850 0.805 0.833 || 0.770 0.730 0.680 || 0.920 0.840 0.837
128 || 0970 0910 0.882 | 0.890 0.890 0.685 || 0.985 0.895 0.941
256 || 0.960 0.940 0.892 || 0.880 0.925 0.709 || 0.975 0945 0.931

Table 2. Scale-MAE outperforms SatMAE and ConvMAE on kNN classification across a variety of %, across a variety of resolutions.
kNN Classification results for Scale-MAE, SatMAE and ConvMAE across a variety of k. Resolution is reported in pixels.

2. Laplacian and Upsampling Block Architectures

Figure 1 illustrates the architecture of Laplacian and Upsampling block architectures described below.
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Upsampling Block
Figure 1. (top) The Laplacian Block (LB) is a fully convolutional architecture consists of a chain of Feature Mapping Block followed by
one final Reconstruction Block. (bottom) The UpSampling Block (UB) consists of a series of transpose convolution layers separated by
LayerNorm and GELU activation.

2.1. Laplacian Block

Laplacian Blocks are used to reconstruct the target at a specific resolution and frequency. A Laplacian Block consists of
a chain of Feature Mapping Block, which distills information at a specific frequency, followed by one final Reconstruction
Block, which generates the final output. A Feature Mapping Block consists of a 3x3 depth-wise convolution layer with GELU
activation, followed by 1x1 convolution. A Reconstruction Block consists of a 4x4 transpose convolution layer followed by a
3x3 depth-wise convolution layer, a 1x1 convolution layer, and a 2x2 transpose convolution layer. In our experiments, we have
two Feature Mapping Blocks per Laplacian Block.

2.2. Upsampling Block

Upsampling Blocks are used to upsample the feature map to a higher resolution. It consists of a series of 2x2 transpose
convolution layers with LayerNorm and GELU activation between them. The number of such transposed convolution layers
are a function of the output and input resolution. This is a progressive process in which we repetitively upsample the feature
map by a factor of 2 until we reach the desired target resolution. Figure 1 illustrates the architecture of these two blocks.

3. Evaluation Details

As discussed in the main experimental section, we investigated the quality of representations learned from Scale-MAE
pretraining through a set of experiments that explore their robustness to scale as well as their transfer performance to additional
tasks. We provide more information and details on these evaluations here. In order to compare with SatMAE [5] and
ConvMAE [7], for our main experiments, we pretrained Scale-MAE with a ViT-Large model using the Functional Map of
the World (FMoW) RGB training set, which consists of 363.6k images of varying image resolution and GSD. The initial
higher resolution image I, is taken as a random 448px? crop of the input image, and the input image I is then a downsampled
224px? from Iy,;. The low frequency groundtruth is obtained by downscaling I, to 14px2 and then upscaling to 224px?, while
the high frequency groundtruth is obtained by downscaling I;,, to 56px? and then upscaling to 448px? and subtracting this
image from Ip,;. This is a common method for band pass filtering used in several super resolution works, where a high to low
to high resolution interpolation is used to obtain only low frequency results, and then high frequency results are obtained by
subtracting the low frequency image.



As further discussed in the main experimental section, we evaluate the quality of representations from Scale-MAE by
freezing the encoder and performing a nonparametric k-nearest-neighbor (kNN) classification with eight different remote
sensing imagery classification datasets with different GSDs, none of which were encountered during pretraining. All KNN
evaluations were conducted on 4 GPUs. Results are in Table 2. The kNN classifier operates by encoding all train and validation
instances, where each embedded instance in the validation set computes the cosine distance with each embedded instance in
the training set, where the instance is classified correctly if the majority of its k-nearest-neighbors are in the same class as the
validation instance. The justification for a kNN classifier evaluation is that a strong pretrained network will output semantically
grouped representation for unseen data of the same class. This evaluation for the quality of representations occurs in other
notable works [1,2, 13].

4. Visualization of SpaceNet Segmentation

Figure 2 shows an additional set of segmentation examples comparing Scale-MAE and vanilla MAE pre-trained on FMoW
and finetuned on SpaceNet v1. The left, center, right columns are ground truth labels, Scale-MAE and vanilla MAE respectively.
The top row shows a 0.3m GSD image and the bottom row shows a 3.0m GSD image. As shown in the figure, Scale-MAE
performs better at both higher and lower GSDs.

5. Glossary
5.1. Ground sample distance

Ground sample distance (GSD) is the distance between the center of one pixel to the center of an adjacent pixel in a remote
sensing image. GSD is a function of sensor parameters (such as its dimensions and focal length), image parameters (the
target dimensions of the formed image), and the geometry of the sensor with respect to the object being imaged on the Earth.
Remote sensing platforms frequently have multiple sensors to capture different wavelengths of light. Each of these sensors
have varying parameters, resulting in different GSDs for an image of the same area. Additionally, the ground is not a uniform
surface with changes in elevation common across the swath of the sensor. In total, a remote sensing platform has a sense of
absolute scale that varies along two dimensions: (1) spectrally depending on the sensor used to capture light, and (2) spatially
depending on surface elevation.
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Figure 2. Visualization of Segmentation Results on SpaceNet. The left, center, right columns are ground truth labels, Scale-MAE and
vanilla MAE, respectively. The top row shows a 0.3m GSD image and the bottom row shows a 3.0m GSD image. As shown in the figure,
Scale-MAE performs better at both higher and lower GSDs.
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