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1. Appendix
1.1. SimCLR vs. Barlow Twins loss function

LSimCLR = uT v+/τ − log
∑

v∈{v+,v−}

exp(uT v/τ) (1)

The above equation represents the NT-Xent (Normalized
Temperature-scaled Cross Entropy) loss function as pro-
posed in [1]. The input uT , v+, and v− are l2 normalized.
τ is a temperature coefficient.

LBarlowTwins =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (2)

In the above equation, C represents the cross-correlation
matrix computed on the output features of the two identical
networks along the batch dimension, as illustrated in [7].
Cii represents the diagonal elements of the cross-correlation
matrix while Cij represents the off-diagonal elements of the
cross-correlation matrix. λ is a positive hyperparameter that
controls the trade-off between the first term (invariance) and
the second term (redundancy reduction).

1.2. Properties of L-DAWA

L-DAWA intrinsically provides significant performance
improvement in cross-silo settings. Such performance im-
provement signifies the importance of introducing diver-
gence control during weight aggregation. One can see
from Table 1, that L-DAWA provides a lightweight aggrega-
tion method that is unbiased and independent of the meta-
data. L-DAWA provides layer-wise divergence control at
the server, unlike FedU which provides partial divergence
control for only the predictor network on the client side.
One can further note from Table 1 that FedAvg, Loss, and
FedU equally treat all the layers of the client’s model by
multiplying it with a constant coefficient. In contrast, L-
DAWA treats each layer of the client’s model by the mea-
sure of divergence that varies from layer to layer.

*Equal contribution, authors ordered alphabetically.

The current state-of-the-art aggregation methods (Fe-
dAvg, Loss, and FedU) can be improved by introducing a
measure of the model quality based on angular measure of
divergence as shown in Table 1. We note that individual
bias toward sample size as in FedAvg and FedU, local loss
in Loss aggregation strategies is effectively mitigated by in-
troducing angular measure of divergence in these methods
resulting in an improved and fair performance for both con-
trastive (SimCLR) and non-contrastive (Barlow Twins) SSL
approaches.

1.3. Optimization trajectory analysis under loss
landscape

We further explore the effects of L-DAWA on the
model’s global loss landscape and the global optimization
trajectories under the cross-silo settings with SimCLR. For
this purpose, we explore the loss landscape and optimiza-
tion trajectories of FedAvg, Loss, and FedU compared with
their divergence-controlled versions L-DAWAFedAvg , L-
DAWALoss and L-DAWAFedU . Interestingly, we find that
the loss landscape of FedAvg, Loss, and FedU (Figure 1 (a-
c)) is more chaotic and the global optimization trajectory
fell into a narrow local minimum leading to sub-optimal
performance. When L-DAWA is introduced into these ag-
gregation methods, the global optimization trajectory ends
up in a much wider basin of attraction in the loss landscape
resulting in improved performance (Figure 1 (d-f)).

1.4. Divergence measurements over the clients

We find that L-DAWA reduces the angular divergence
between the clients’ models and the global model during
FL pre-training by scaling each client with its measure of
the angular divergence with respect to the global model.
Such scaling controls the length of the step taken by the
global model to reach the optimum point. For example, if
the angular divergence between a certain client’s model and
the global model is higher, L-DAWA will downscale the
contribution of such client’s model based on the extent of
the divergence. This results in the global model optimiza-
tion trajectory being less affected by the diverging clients,



Method Metadata Type Bias Div. Control Weighting Coefficient %Acc. Cross-Silo

Type Nature CIFAR-10 CIFAR-100 Tiny ImageNet
SimCLR Barlow Twins SimCLR Barlow Twins SimCLR Barlow Twins

FedAvg Sample Size ✓ None Sample Prob. Const. 71.07 65.02 43.85 35.70 32.92 15.40
Loss Local Loss ✓ None Local Loss Const. 71.34 57.12 44.69 34.76 33.37 12.24
FedU Sample Size ✓ Partial Sample Prob. Const. 70.36 64.55 44.31 35.25 32.63 15.16
L-DAWA None ✗ Layer-wise Layer-Wise Div. Var. 75.60 69.31 49.88 41.85 37.22 21.47
L-DAWAFedAvg Sample Size ✓ Layer-wise Layer-Wise Div. + Sample Prob. Var. 75.72 69.92 49.99 41.49 36.97 21.58
L-DAWALoss Local Loss ✓ Layer-wise Layer-Wise Div. + Local Loss Var. 76.55 69.46 50.29 41.89 37.12 11.90
L-DAWAFedU Sample Size ✓ Layer-wise Layer-Wise Div. + Sample Prob. Var. 76.23 69.50 50.59 41.72 37.35 21.80

Table 1: Comparison of properties and performances for L-DAWA with state-of-the-art aggregation methods. ”Acc.”, ”Div.”, ”Prob.”,
”Const.”, ”Var.” stands for Accuracy, Divergence, Probability, Constant, and Variable, respectively. Bias represents the deviation towards
the meta data.

(a) FedAvg (b) Loss (c) FedU

(d) L-DAWAFedAvg (e) L-DAWALoss (f) L-DAWAFedU

Figure 1: Illustration of global model’s optimization trajectories and the loss landscape under various aggregation methods using SimCLR
in FL settings.

which causes improved control over the divergence of indi-
vidual clients’ models with respect to the global model. To
provide a formal illustration, we compute the average angu-
lar divergence for each client in cross-silo FL settings with
SimCLR as shown in Figure 2. One can see from Figure
2 that the angular divergence (a.k.a. cosine of the angle
between the global model and client’s models) of FedAvg
for all clients with increasing local epochs gets higher, re-
sulting in lower values of mean angular divergence. On the
other hand, L-DAWA maintains a steady angular divergence
resulting in higher mean values for angular divergence.

1.5. Evaluation with individual clients fine-tuning

We empirically show that L-DAWA and L-DAWA com-
bined with FedAvg (i.e., L-DAWAFedAvg), provide nearly

the same performance on all the participating clients in FL
cross-silo settings. This phenomenon suggests that the in-
clusion of angular divergence measurement δ restricts the
divergence bounds of the optimization trajectory in the
global model. To simulate such an effect, we pre-trained
a SimCLR on the Non-iid (α = 0.1) version of CIFAR10
for R = 200 rounds under the cross-silo settings (K = 10)
with FedAvg, L-DAWA, and L-DAWAFedAvg. After pre-
training, we fine-tune the last layer of the pre-trained global
model on the individual clients’ dataset that has participated
in FL and subsequently evaluate it on the common CIFAR-
10 test set (Table 2). From the results of Table 2, we note
the following observations:

First, the clients with more data do not necessarily give
better performance. One can see from Table 2 that the client



(a) E=1 (b) E=5 (c) E=10

Figure 2: The mean angular divergence between the clients’ models with respect to the previous global model averaged over R = 100
rounds, computed by the following equation: µδ = 1

R

∑R
r=1 δ

r
k, where k = {1, ..., 10}. The higher δ value means lower divergence.

L-DAWA has a good control of oscillations, maintaining the angular divergence in a lower level over FL rounds than FedAvg.

client → 1 2 3 4 5 6 7 8 9 10 Avg
Data Samples per client → 5839 163 2477 5706 8780 7183 8519 6518 2978 1802 4996.5

FedAvg 40.18 27.22 23.64 30.55 32.21 41.89 34.85 39.22 18.92 27.65 31.63
L-DAWA 42.57 29.97 26.95 32.64 33.68 45.02 36.74 43.58 19.69 29.93 34.08

L-DAWAFedAvg 43.13 30.63 26.96 33.00 33.68 45.61 38.21 43.62 20.07 30.19 34.51

Table 2: Linar-probe accuracy of the FL (cross-silo) pre-trained model. After FL pre-training, we fine-tune the last layer of each client
model with the client’s local dataset and evaluate it on the CIFAR-10 test set. It can be seen that L-DAWA and L-DAWAFedAvg provide
nearly the same test results suggesting that both L-DAWA and L-DAWAFedAvg may converge to the similar basin of loss landscape during
FL pre-training.

5, 7 contain more than 8000 data samples, however, their
performance on the test set is 32.21% and 34.85%, respec-
tively. In contrast, client 1 contains 5839 samples while ob-
taining a much better performance of 40.18% on the test
set. One can see that in the cross-silo settings, FedAvg
will prioritize client 5, 7 over other clients with a proba-
bility (weighting) of 0.18 and 0.17, respectively, resulting
in sub-optimal performance. On the other hand, client 1
would only obtain a probability (weighting) of 0.11, thus
down-weighting the participation of client 1 during FL pre-
training.

Second, the introduction of an angular measure of diver-
gence in FedAvg (i.e., L-DAWAFedAvg) resulted in similar
performance as with L-DAWA, for all the clients. One can
see from Table 2, that clients aggregation with L-DAWA
and L-DAWAFedAvg show similar results suggesting δ ef-
fectively reduces the divergence, the effects of biased-
weighting of FedAvg, and controls the optimization trajec-
tory. We conjecture that this is due to L-DAWA and L-
DAWAFedAvg trajectories being closer to each other in the
optimization surface. On average, one can see that the in-

troduction of δ in FedAvg provides nearly 2.45% gain in the
performance across the clients.

1.6. L-DAWA in linear fine-tuning

In this section, we provide additional results and detailed
analysis for linear evaluation of our proposed methods,
which are excluded from the main text of our manuscript
due to the page limit.

1.6.1 Cross-silo performance

We compare L-DAWA with FedAvg [5] , Loss [2], FedU
[8], and EUC [4] on CIFAR-10 under cross-silo (K=10) FL
settings (Table 3). Note that, for the EUC method, we use
the ’layer-wise unit model discrepancy’ measure to make a
decision about the update of the global model’s layer with
the client’s model layer during aggregation. One can see
from Table 3 that L-DAWA obtains the highest performance
under different local epochs for both SimCLR and Barlow
Twins.

We further provide additional results on Tiny ImageNet



SimCLR Barlow Twins
Method E=1 E=5 E=10 E=1 E=5 E=10
FedAvg (Baseline) 50.92 65.42 71.07 51.65 58.84 65.02
Loss [2] 50.99 63.83 71.34 48.24 54.64 57.12
FedU [8] 51.35 64.63 70.36 50.60 58.26 64.55
EUC [4] 51.23 64.10 70.51 51.16 58.76 63.60
L-DAWA 60.29 70.65 75.60 54.84 65.07 69.31

Table 3: Linear-probe accuracy on downstream for FedAvg,
FedU, Loss, EUC, and L-DAWA. Each method is pre-trained with
SimCLR/Barlow Twins on the Non-iid version (α=0.1) of CIFAR-
10 for R=200 rounds under the cross-silo (K=10) settings.

SimCLR Barlow Twins
Method E=1 E=5 E=10 E=1 E=5 E=10
FedAvg (Baseline) 16.87 27.70 32.92 8.03 12.50 15.40
Loss [2] 15.25 28.47 33.37 8.26 7.97 12.24
FedU [8] 16.41 27.46 32.63 8.62 13.40 15.16
EUC [4] 15.99 28.52 32.15 1.11 0.5 0.5
L-DAWA 23.12 31.97 37.72 10.76 17.34 21.47
L-DAWAFedAvg 22.39 32.65 36.97 9.23 17.20 21.58
L-DAWALoss 21.83 31.74 37.35 7.94 6.92 11.90
L-DAWAFedU 23.40 31.98 37.12 11.30 17.07 21.80

Table 4: Linear-probe accuracy on downstream for FedAvg,
FedU, Loss, EUC, and L-DAWA. Each method is pre-trained with
SimCLR/Barlow Twins on the Non-iid version (α=0.1) of Tiny-
ImageNet for R=200 rounds under the cross-silo (K=10) settings.

Method SimCLR Barlow Twins
100% 1% 10% 100% 1% 10%

FedAvg 32.92 12.66 24.54 15.40 5.21 11.35
Loss 33.37 12.77 24.12 12.24 3.14 6.72
FedU 32.63 12.11 24.23 15.16 5.29 10.49

L-DAWA 37.22 12.74 26.31 21.47 8.20 15.19
L-DAWAFedAvg 36.97 12.77 26.32 21.58 8.05 15.82

L-DAWALoss 37.12 13.48 26.63 11.90 3.58 6.87
L-DAWAFedU 37.35 12.77 26.09 21.80 7.70 14.78

Table 5: Linear-probe evaluation on Tiny ImageNet for our pro-
posed methods compared to SOTA baselines. Each method is
pre-trained with SimCLR/Barlow Twins on the Non-iid version
(α=0.1) of Tiny ImageNet for 200 rounds under the cross-silo
(K=10) settings.

by comparing L-DAWA, L-DAWAFedAvg, L-DAWALoss,
L-DAWAFedU against FedAvg, Loss, and FedU. We pre-
train SimCLR and Barlow Twins on Tiny ImageNet in
cross-silo FL settings with 10 clients for 200 rounds with
10 local epochs per round. Table 5 shows the results of
fine-tuning when 100%, 1%, and 10% Tiny ImageNet train-
ing data are available. One can see that even in the case of
limited data, L-DAWA, and its variants provide substantial
performance improvement compared to FedAvg, Loss, and
FedU.

1.6.2 Cross-device performance

Although our analysis is mainly limited to the cross-silo
settings, we also provide results for the more challenging
cross-device settings. Table 6 shows that our proposed
methods still obtain the best performance in most of the
setup, except for the 10% training data settings on CIFAR-
100 dataset. Especially, L-DAWA achieves significant gains
in the extreme semi-supervised settings with only 1% train-
ing data on CIFAR-100. Additionally, when layer-wise di-
vergence is introduced in FedAvg, Loss, and FedU, we see
a performance improvement in most of the cases, as shown
in Table 6, suggesting the importance of the integration of
divergence into aggregation within cross-device setting.

1.7. Transfer learning on CIFAR10/100

We further evaluate the generalization of the learned
features from FL pre-training by fine-tuning the resulting
model on a different dataset. Such evaluation helps in as-
sessing whether the pre-trained features can be transferred
to different downstream tasks. We follow the same proce-
dure that is adopted for linear evaluation. Specifically, we
first perform FL pre-training on CIFAR-10 (CIFAR-100)
followed by linear-probe (fine-tuning the last classification
layer) on CIFAR100 (CIFAR10). Note that the CIFAR-10
classes and CIFAR-100 classes are mutually exclusive [3].

One can see from Table 7, that L-DAWA generalizes well
for both SimCLR and Barlow Twins compared to other ag-
gregation strategies in the cross-silo and cross-device set-
tings. We further show that when the layer-wise divergence
is introduced in FedAvg, Loss, and FedU, we find a per-
formance improvement for these methods in most cases in
cross-silo and cross-device settings.

1.8. Evaluation on federated supervised training

Our proposed method has the potential to be extended to
the setting of federated supervised training. We conduct an
evaluation on the Non-iid version of CIFAR-10 under cross-
silo (K=10) setting. One can see from Table 8 that L-DAWA
surpasses all other baseline methods (FedAvg, FedYogi and
FedProx) by at most 1.41%.

1.9. Ablation study

1.9.1 Effectiveness of δ in L-DAWA

We find that the angular measure of divergence (i.e., δ) be-
tween the local clients model and the global model plays
an important role in determining the trajectory of the final
global model. In Table 9, we show that without δ, L-DAWA
results in sub-optimal performance. The results in Table 9
imply that for prolonged training in FL, both FedAvg and L-
DAWA (without δ) will result in sub-optimal performance.
We also find that without δ, L-DAWA reduces to FairAvg
[6], (i.e., wr+1

g = 1
K

∑K
k=1 w

r
k). However, one can see



Method
CIFAR-10 CIFAR-100

SimCLR Barlow Twins SimCLR Barlow Twins
100% 1% 10% Linear 1% 10% 100% 1% 10% 100% 1% 10%

FedAvg 68.66 52.83 66.22 62.07 44.50 57.60 44.59 14.18 32.55 32.65 8.53 20.85
Loss 66.09 48.93 63.24 56.40 40.31 52.02 44.83 14.05 32.40 33.27 9.11 21.88
FedU 68.52 51.52 66.20 61.43 45.17 57.01 44.56 13.54 31.86 32.89 9.06 21.61
L-DAWA 68.20 51.45 64.71 58.25 41.86 53.26 45.04 14.64 32.07 34.12 9.39 21.84
L-DAWAFedAvg 69.92 52.15 65.73 62.32 44.75 56.93 44.19 13.79 31.80 33.20 8.46 21.78
L-DAWALoss 68.79 53.66 65.68 61.36 44.77 56.88 45.08 14.63 31.67 31.93 8.40 20.25
L-DAWAFedU 69.69 52.41 66.63 62.19 46.64 58.46 44.97 14.05 31.85 32.84 8.95 21.07

Table 6: Comparison of the proposed aggregation strategy with state-of-the-art methods on CIFAR-10 and CIFAR-100 under cross-device
(K=100) settings.

Cross-silo Cross-device
CIFAR-10 → CIFAR-100 CIFAR-100 → CIFAR-10 CIFAR-10 → CIFAR-100 CIFAR-100 → CIFAR-10

Method SimCLR Barlow Twins SimCLR Barlow Twins SimCLR Barlow Twins SimCLR Barlow Twins
FedAvg 44.28 34.34 66.82 60.28 44.94 37.77 67.48 57.71
Loss 40.72 28.25 67.02 58.66 41.33 32.06 66.91 56.61
FedU 40.49 33.43 67.66 59.32 44.28 37.21 67.12 56.53
L-DAWA 46.31 40.00 74.52 66.39 43.65 33.51 68.21 57.66
L-DAWAFedAvg 46.38 39.93 74.30 65.63 45.28 36.88 67.01 57.45
L-DAWALoss 46.19 38.74 74.26 66.03 45.07 37.18 67.99 55.55
L-DAWAFedU 46.30 38.78 73.89 65.89 45.10 38.08 67.69 56.73

Table 7: Transfer learning on CIFAR10/100 under cross-silo and cross-device settings.

Aggregation Type E1 E5 E10
FedAvg 77.91 83.76 81.31
FedYogi 77.49 72.50 74.85
FedProx 80.55 74.87 72.24
L-DAWA 81.96 84.68 82.35

Table 8: Supervised evaluation on the Non-iid version of CIFAR-
10 under the cross-silo (K=10) settings. The models are trained
for 500, 100 and 50 FL rounds corresponding to the settings of 1,
5 and 10 local epoch(s), respectively.

Method E1 E5 E10
FedAvg 50.92 65.05 71.07
L-DAWA w/o δ 50.33 64.09 70.31
L-DAWA w/ δ 60.29 70.65 75.60

Table 9: Ablation study of δ: Each method is pre-trained with
SimCLR on the Non-iid version of CIFAR-10 under the cross-silo
(K=10) settings for R = 200 rounds.

in Table 9 that even treating all the clients with the same
weighting (i.e., 1

K ), the results are sub-optimal.

Agg.strategy SSL-Method Momentum E1 E5 E10

FedAvg

F-SimCLR ✓ 51.29 68.25 74.50
F-Barlow Twins ✓ 57.49 63.49 66.56
F-SimCLR ✗ 49.05 59.52 66.36
F-Barlow Twins ✗ 53.36 65.89 68.03

Centralized SimCLR ✓ 85.27
Barlow Twins ✓ 81.55

Table 10: Ablation study of momentum: Linear evaluation accu-
racy on the CIFAR10 dataset with cross-silo settings and iid data.

1.9.2 Effects of momentum

We provide an ablation study in Table 10 to highlight the
importance of SGD momentum during FL pre-training. In
short, we find that turning on the SGD momentum for Bar-
low Twins during FL pre-training can adversely affect the
downstream task performance. In contrast, SimCLR im-
proves the downstream task performance by turning on the
SGD momentum during FL pre-training. We conjecture that
this is due to the less divergence caused by SimCLR com-
pared to Barlow Twins in FL settings.
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Deny. Barlow twins: Self-supervised learning via redundancy
reduction. In International Conference on Machine Learning,
pages 12310–12320. PMLR, 2021. 1

[8] Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang,
and Shuai Yi. Collaborative unsupervised visual represen-
tation learning from decentralized data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 4912–4921, 2021. 3, 4


