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(Supplemental Material)

In the supplemental material, we provide:

• more details of network structure and computational
requirements in Sec. 1,

• the details of mesh smooth loss in Sec. 2,

• more quantitative results in Sec. 3,

• more ablation experiments in Sec. 4,

• qualitative results in real scenarios in Sec. 5,

Note that all the notation and abbreviations here are con-
sistent with the main manuscript.

1. Details of Network Structure and Computa-
tional Requirements

In this section, we introduce the structure details of the
feature fusion layers, the Graph Convolutional Network
(GCN) and the transformers. First, we use a residual con-
volutional module as the stacked hourglass network [6] to
fuse the feature maps from the encoder and previous decod-
ing layer. Meanwhile, we use a residual convolution mod-
ule to enhance the fused visual feature map with projected
features. We set the number of channels of fused visual
features and enhanced visual features to 256. We adopt a
4-layer semantic GCN [11] to perform information interac-
tion between the single-hand joints, where the number of
channels of joint features is 128. We adopt a 4-layer trans-
former [12] for information interaction between two-hand
joints, in which we add spatial position encoding to the in-
put joint features. Wtih a single GPU (NVIDIA A100) and a
batch size of 64, for the network with two refinement stages,
the training time is 39.8h, the memory usage is 22.1G, the
FLOPs is 30.8G, and the model parameters are 55.1M.

2. Mesh Smooth Loss
Following previous methods [9, 4, 3], we use mesh

smooth loss to maintain the estimated mesh geometry rea-
sonable, including a normal consistency loss Lnorm and

edge length consistency loss Ledge. Lnorm is defined as
follows:
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where f and nf indicate a face of the hand mesh and the
unit normal vector of face f , respectively. eij indicates a
edge of the face f . ⟨·, ·⟩ is the inner product of two vectors.

Ledge is defined as follows:
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Ledge constrains each edge of the predicted mesh to have
the same edge length as the ground truth.

3. More Quantitative Results

In the dataset proposed by Tzionas et al. [8], we selected
the sequence containing two hands for quantitative exper-
iments. In particular, we only use this dataset for testing
and all models are trained using the InterHand2.6M [5]. As
shown in Table 1, our method outperforms IntagHand [3]
and InterShape [10] by a large margin on [8], which fur-
ther demonstrates the superior generalization ability of our
method.

4. Ablation Study

Our basic model regresses the hand model parameters
directly from the visual features. We tried multiple good
practices to improve the performance of the basic model,

MPJPE MPVPE
InterShape [10] 18.24 17.93
IntagHand [3] 19.21 18.91
Ours 16.48 16.25

Table 1. Quantitative results on Tzionas et al. [8]. We report the
MPJPE (mm) and MPVPE (mm).



Figure 1. Two-hand reconstruction results in real scenarios on different subjects with different hand shapes and hand poses.

Method MPJPE MPJPE MIAA
Baseline 12.44 12.11 7.41
w/o Attn 12.53 12.23 7.53
w/o Smooth L1 12.49 12.20 7.50
w/o Motion Blur 12.50 12.21 7.51
w/o large LR 12.79 12.45 7.64
w/o All 13.01 12.67 7.83

Table 2. Ablation study of the basic model on InterHand2.6M [5].
We report the MPJPE (mm), MPVPE (mm) and MIAA (pixel).

including adopting a larger learning rate (from 1e-4 to 3e-
4), adopting SmoothL1 loss [1, 7] instead of L1 loss, adopt-
ing motion blur for data augmentation, adopting the atten-
tion mechanism to obtain the different feature of the left
and right hand respectively, etc. As shown in Table 2, using
the attention mechanism, data augmentation and Smooth L1
loss have an impact of about 0.1 mm on the basic model,
and the use of a larger learning rate has an impact of close
to 0.35 mm. If these components are removed, the MPJPE
drops to 13.01 mm. It is worth mentioning that compared to
the previous methods, our method can adopt a larger learn-

ing rate due to the simple and efficient network design.

5. Qualitative Results
As shown in Fig. 1, we experiment on five subjects

in real scenarios. The five subjects have different hand
shapes and hand poses. First, our method is able to gen-
erate relatively accurate mesh-image alignments for unseen
subjects. Second, our method can also perform reasonable
reconstructions for some unseen complex interacting poses.
Overall, our method achieves efficient pixel-level alignment
and 3D spatial relationship modeling thanks to the decou-
pled design of 2D visual feature space and 3D pose feature
space. At the same time, sparse and compact node-level in-
formation interaction avoids overfitting and achieves strong
generalization ability. In particular, we provide a video in
the Supplementary Materials to demonstrate the strengths
of our method for spatial relationship modeling and image-
mesh alignment compared to SOTA method IntagHand [3].
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