
Hierarchical Prior Mining for Non-local Multi-View Stereo
Supplementary Material

Chunlin Ren1 Qingshan Xu2 Shikun Zhang1 Jiaqi Yang1*

1 Northwestern Polytechnical University 2 Nanyang Technological University
{renchunlin, zhangshikun}@mail.nwpu.edu.cn; qingshan.xu@ntu.edu.sg;

jqyang@nwpu.edu.cn

A. Review of ACMH

In this section, we briefly review the state-of-the-art
diffusion-like propagation MVS framework ACMH [10],
which is the baseline method of HPM-MVS. ACMH fol-
lows the classical four-step pipeline of the PatchMatch
MVS method and improves hypothesis propagation and
multi-view matching cost evaluation. Therefore, we focus
on these two parts of ACMH.
Hypothesis Propagation. Following the idea proposed in
Gipuma [1], ACMH first divides all the pixels in the ref-
erence image into a red-black checkerboard pattern, which
uses black pixels as candidates to update all the red pix-
els in parallel and vice versa. Then, ACMH expands eight
fixed positions in Gipuma into four V-shaped areas and four
long strip areas and samples eight reasonable hypotheses
for the center pixel to be updated. Finally, eight sampled
hypotheses are set to a current candidate hypothesis set,
Θ = {θi|i = 0 · · · 8}.
Multi-View Matching Cost Evaluation. Given a view se-
lection set I and a current candidate hypothesis set Θ for
the center pixel, ACMH first calculates their correspond-
ing matching costs and embeds them into a cost matrix M
which is used for better view selection,

M =


m1,1 m1,2 · · · m1,N−1

m2,1 m2,2 · · · m2,N−1

...
...

. . .
...

m8,1 m8,2 · · · m8,N−1

 , (1)

where N is the number of views in the set I and mi,j is
the matching cost for hypothesis θi scored by the view Ij .
Then, ACMH employs a voting decision in each column
to obtain an appropriate view set St. However, different
views in St serve different purposes and they should con-
tribute different weights. Therefore, the final multi-view

1Corresponding author

aggregated matching cost is defined as,

cphoto(θi) =

∑
j wj ·mi,j∑

j wj
, (2)

where wj is the weight of view Ij . Finally, the hypothesis
with the minimum multi-view matching cost is utilized to
modify the center pixel.

B. Fusion
After generating all the depth maps, a fusion step is used

to merge them into a point cloud. We use different fusion
settings for different datasets concerning the difference of
the numbers of images in Tanks & Temples dataset [2] and
ETH3D benchmark [5].
Fusion on Tanks & Temples Datasets. We follow a fu-
sion method similar to [4, 10] to merge hypotheses into a
point cloud. First, the hypotheses of each image are pro-
jected into neighboring images to generate corresponding
matches. Next, a consistent match is defined as satisfy-
ing the following fixed consistency constraints: the relative
depth error ε less than 0.01, the angle between normals θ
less than 10◦ and the reprojection error ψ less the 2 pixels.
If there exist τsrc ≥ 2 source images whose corresponding
matches satisfy the above conditions, these hypotheses are
projected into the world coordinate and averaged to a 3D
point.
Fusion on ETH3D Benchmark. We employ a flexible fu-
sion method proposed by [9], which defines a dynamic con-
sistency constraint. Specifically, in at least τsrc = 1 source
image, if the relative depth error ε is less than 0.01, the nor-
mal deviation angle θ is less than 30◦ and the reprojection
error ψ is less than 2 pixels, the dynamic consistency con-
strain for pixel x in image Ii is defined as,

c(x) =

N−1∑
j=0∧j ̸=i

ci,j(p), (3)

ci,j(p) = e−(λd·ε+λn·θ+λr·ψ), (4)



where λd = 200, λn = 10 and λre = 1 are weights. In
the meantime, a counter n will be used to record the num-
ber of dynamical consistency calculations. At last, if the
consistency metric satisfies the condition c(x) > 0.3n, the
reliable hypothesis will be projected as a 3D point.

C. Algorithm

Algorithm 1: HPM-MVS pipline
Input : multi-view images with camera parameters
Output: a 3D point cloud

1 for each image do
2 set reference image and source images;
3 random initialization hypotheses;
4 for iteration i = 1 to Tphoto do
5 hypothesis propagation via NESP;
6 update hypotheses via multi-view matching
7 cost with photometric consistency;
8 refinement via Eq. 4;
9 end

10 end
11 for each image do
12 set reference image and source images;
13 random initialization hypotheses;
14 for scale j = 0 to Tscale do
15 downsample the hypothesis map to scale j;
16 construct prior via Eq. 5 and 6;
17 upsample the prior to the original scale;
18 for iteration i = 1 to Tprior do
19 hypothesis propagation via NESP;
20 update hypotheses via multi-view
21 matching cost with prior assistance;
22 refinement via Eq. 4;
23 end
24 end
25 end
26 for each image do
27 set reference image and source images;
28 initialization via the obtained hypotheses;
29 for iteration i = 1 to Tgeom do
30 hypothesis propagation via NESP;
31 update hypotheses via multi-view matching
32 cost with geometric consistency;
33 refinement via Eq. 4;
34 end
35 end
36 for each image do
37 back project hypotheses and generate points;
38 end

Algorithm 1 is the overall pipeline of HPM-MVS. To en-
sure the overall efficiency of the algorithm, {Tphoto, Tprior,
Tgeom} is set to {3, 3, 2}, respectively. Tscale is a dynamic

Table 1: Runtime of depth map generation for a 3200 ×
2130 image.

Method Time (s)
COLMAP [4] 60.87
ACMM [10] 19.68
ACMP [11] 13.14
ACMMP [9] 22.33
HPM-MVSfast 16.72
HPM-MVS 21.86

Table 2: Runtime of different stages of HPM-MVSfast for a
3200 × 2130 image.

Stage Time (s) Ratio (%)
Basic MVS with NESP 3.78 22.61

Planar Prior Model Construction (low scale) 2.46 14.71
Basic MVS with NESP & Prior Assistance 2.45 14.65

Basic MVS with NESP & Geometric Consistency 8.03 48.03
Total Time 16.72 -

Table 3: Runtime of different stages of HPM-MVS for a
3200 × 2130 image.

Stage Time (s) Ratio (%)
Basic MVS with NESP 3.92 17.93

Planar Prior Model Construction (low scale) 2.53 11.57
Basic MVS with NESP & Prior Assistance 1.99 9.10

Planar Prior Model Construction (medium scale) 0.88 4.03
Basic MVS with NESP & Prior Assistance 1.96 8.97

Planar Prior Model Construction (high scale) 0.72 3.29
Basic MVS with NESP & Prior Assistance 1.88 8.60

Basic MVS with NESP & Geometric Consistency 7.98 36.51
Total Time 21.86 -

variable that depends on the current image’s resolution,

Tscale = max(0,

⌈
log2

[
max(len, wid)

1000

]⌉
), (5)

where len and wid represent the length and width of the
image.

D. Runtime Performance
In this section, we conduct a runtime analysis experi-

ment. For evaluation, we set the input image size to 3200 ×
2130 and test all methods on the same computer.

Table 1 summarizes the runtime of depth map generation
for different PatchMatch MVS methods. One can see that
COLMAP [4] is significantly more time-consuming than
others, because the sequential propagation of COLMAP
only updates one pixel horizontally and vertically at a time.
Although our HPM-MVS and HPM-MVSfast are less effi-
cient than ACMP [11] due to the extensible strategy in the
hypothesis propagation and the additional upsampling op-
eration, they are still faster than ACMMP [9] and are in an
acceptable range. Overall, our methods can strike a good
trade-off in terms of accuracy, completeness and efficiency.



Table 4: Point cloud evaluation on ETH3D [5] benchmark at different thresholds (1cm, 2cm, 5cm and 10cm).

Method 1cm 2cm 5cm 10cm

Train.

i) Traditional
COLMAP [4] 84.34 / 38.65 / 51.99 91.85 / 55.13 / 67.66 97.09 / 69.91 / 80.50 98.75 / 79.47 / 87.61
PCF-MVS [3] 73.99 / 62.31 / 67.32 84.11 / 75.73 / 79.42 92.44 / 85.52 / 88.66 95.98 / 90.42 / 92.98
ACMM [10] 82.85 / 57.91 / 67.58 90.67 / 70.42 / 78.86 96.31 / 80.91 / 87.68 98.12 / 86.40 / 91.70
ACMP [11] 82.17 / 59.78 / 68.72 90.12 / 72.15 / 79.79 95.96 / 82.23 / 88.32 97.97 / 87.15 / 92.03
ACMMP [9] 83.17 / 63.27 / 71.57 91.03 / 77.27 / 83.42 96.12 / 88.48 / 92.03 97.96 / 93.19 / 95.46
ii) Learning

PatchMatchNet [7] 48.67 / 53.37 / 49.92 64.81 / 65.43 / 64.21 82.44 / 76.85 / 78.67 89.98 / 83.28 / 85.70
IterMVS [6] 59.24 / 50.23 / 53.45 79.79 / 66.08 / 71.69 88.32 / 72.43 / 78.79 96.35 / 82.62 / 88.60

MVSTER [8] 53.08 / 62.51 / 57.19 68.08 / 76.92 / 72.06 84.79 / 87.68 / 86.03 91.97 / 91.91 / 91.73
HPM-MVSfast 82.95 / 57.36 / 67.39 91.17 / 73.20 / 80.86 96.51 / 86.22 / 90.89 98.23 / 92.41 / 94.97

HPM-MVS 82.93 / 65.16 / 72.73 90.66 / 79.50 / 84.58 96.13 / 89.98 / 92.88 97.97 / 95.59 / 96.22

Test

i) Traditional
COLMAP [4] 83.75 / 50.90 / 61.27 91.97 / 62.98 / 73.01 96.75 / 75.74 / 83.96 98.25 / 84.54 / 90.40
PCF-MVS [3] 72.70 / 70.10 / 70.95 82.15 / 79.29 / 80.38 89.12 / 86.77 / 87.74 92.12 / 91.26 / 91.56
ACMM [10] 82.11 / 64.35 / 70.80 90.65 / 74.34 / 80.78 96.30 / 83.72 / 89.14 98.05 / 88.77 / 92.96
ACMP [11] 82.64 / 66.24 / 72.30 90.45 / 75.58 / 81.51 95.71 / 84.00 / 89.01 97.47 / 88.71 / 92.62
ACMMP [9] 84.22 / 70.81 / 76.02 91.91 / 82.10 / 85.89 96.61 / 90.39 / 93.24 98.05 / 94.67 / 96.27
ii) Learning

PatchMatchNet [7] 54.60 / 67.07 / 59.84 79.71 / 77.46 / 73.12 85.22 / 86.83 / 85.85 91.98 / 92.05 / 91.91
IterMVS [6] 63.12 / 63.77 / 62.79 84.73 / 76.49 / 80.06 90.18 / 80.67 / 84.88 96.92 / 88.34 / 92.29

MVSTER [8] 63.29 / 73.25 / 67.16 77.09 / 82.47 / 79.01 89.32 / 89.25 / 88.84 94.21 / 92.71 / 92.30
HPM-MVSfast 84.59 / 67.86 / 74.30 92.50 / 80.25 / 85.35 97.01 / 90.38 / 93.40 98.32 / 94.89 / 96.51

HPM-MVS 84.12 / 72.60 / 77.28 92.13 / 83.25 / 87.11 96.81 / 91.62 / 94.02 98.11 / 95.41 / 96.69

Tables 2 and 3 list the runtime of each stage for HPM-
MVSfast and HPM-MVS, respectively. Based on the re-
sults, the following conclusions can be drawn: 1) the time
consumption of planar prior model construction takes a
small proportion; 2) the auxiliary time of planar prior con-
struction and prior assistance is continuously reduced be-
cause it is a process of continuous optimization.

E. More Evaluation Results
In order to show a more comprehensive demonstration

of the excellent results of our methods, we supplement the
point cloud evaluation results on the ETH3D [5] benchmark
at more thresholds. As shown in Table 4, both HPM-MVS
and HPM-MVSfast can produce impressive results.

F. Visualization of Point Clouds
Figs. 1 and 2 show the reconstructed point clouds on the

Tanks & Temples [2] datasets. Figs. 3, 4, 5 and 6 present
the qualitative results on the ETH3D [5] benchmark.

References
[1] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.

Massively parallel multiview stereopsis by surface normal
diffusion. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 873–881, 2015. 1

[2] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics, 36(4):1–13,
2017. 1, 3, 5, 6

[3] Andreas Kuhn, Shan Lin, and Oliver Erdler. Plane comple-
tion and filtering for multi-view stereo reconstruction. In
Proceedings of the German Conference on Pattern Recogni-
tion, pages 18–32. Springer, 2019. 3

[4] Johannes L Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. In Proceedings of the IEEE
European Conference on Computer Vision, pages 501–518.
Springer, 2016. 1, 2, 3

[5] Thomas Schops, Johannes L Schonberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3260–3269, 2017. 1, 3, 7, 8, 9, 10

[6] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, and
Marc Pollefeys. Itermvs: Iterative probability estimation for
efficient multi-view stereo. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8606–8615, 2022. 3

[7] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo
Speciale, and Marc Pollefeys. Patchmatchnet: Learned
multi-view patchmatch stereo. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 14194–14203, 2021. 3

[8] Xiaofeng Wang, Zheng Zhu, Guan Huang, Fangbo Qin, Yun
Ye, Yijia He, Xu Chi, and Xingang Wang. Mvster: Epipolar
transformer for efficient multi-view stereo. In Proceedings of



the IEEE European Conference on Computer Vision, pages
573–591. Springer, 2022. 3

[9] Qingshan Xu, Weihang Kong, Wenbing Tao, and Marc Polle-
feys. Multi-scale geometric consistency guided and planar
prior assisted multi-view stereo. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2022. 1, 2, 3

[10] Qingshan Xu and Wenbing Tao. Multi-scale geometric con-
sistency guided multi-view stereo. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5483–5492, 2019. 1, 2, 3

[11] Qingshan Xu and Wenbing Tao. Planar prior assisted patch-
match multi-view stereo. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 12516–
12523, 2020. 2, 3



Auditorium

Ballroom

Courtroom

Museum

Palace

Temple

Figure 1: Reconstruction results on Tanks & Temples [2] Advanced set. Left: HPM-MVSfast. Right: HPM-MVS



Family

&

Francis

Horse

&

Lighthouse

Panther

M60

Train

Playground

Figure 2: Reconstruction results on Tanks & Temples [2] Intermediate set.



Courtyard

Delivery

area

Electro

Facade

Kicker

Meadow

Figure 3: Reconstruction results on ETH3D [5] Training set (1/2).



Office

Pipes

Playground

Terrace

Terrains

Relief

&

Relief 2

Figure 4: Reconstruction results on ETH3D [5] Training set (2/2).



Botanical 

garden

Bridge

Boulders

Exhibition

hall

Door

&

Lounge

Lecture 

room

&

Statue

Figure 5: Reconstruction results on ETH3D [5] Test set (1/2).



Old

computer

Living

room

Terrace 2

Observatory

Figure 6: Reconstruction results on ETH3D [5] Test set (2/2).


