
CGBA: Curvature-aware Geometric Black-box Attack
(Supplementary Material)

In this supplementary material, in Section A, we illus-
trate the boundary search along a semicircular path (BSSP)
and the Initialization algorithms. The experimental results
on the ImageNet dataset are presented in Section B, while
those on the CIFAR10 dataset against two popular classi-
fiers are given in Section C. Moreover, we compare our pro-
posed BSSP over binary search along the direction of the es-
timated normal vector (BSNV) in Section D and verify its
effectiveness through both theoretical analysis and exper-
imental evaluation. Finally, we demonstrate and compare
adversarial samples and their corresponding perturbations
against different classifiers in Section E.

A. Algorithms
The proposed CGBA is based on querying the bound-

ary point along a semicircular path on a restricted 2D plane.
The method to query a boundary point using BSSP is shown
in Algorithm 3. This method is quite similar to the bi-
nary search. However, we conduct the boundary search
on a semicircular path in a 2D plane rather than follow-
ing a straight line 1D path. Starting from an adversarial
and a non-adversarial point as two ends, we gradually de-
crease the range of the distance between adversarial and
non-adversarial points on the semicircular trajectory to ob-
tain the desired boundary point within a certain error limit.
Line-3 and line-4 of the algorithm indicate the obtained unit
directions ζ̂c and ζ̂adv towards a non-adversarial point xc

and an adversarial point xbt on the semicircular trajectory
from source xs, respectively. Then, we obtain a perturbed
point xr = xs +d(ζ̂r) on the semicircular trajectory in the
resultant direction ζ̂r, obtained from the aforementioned di-
rections as shown in line-6, where d(ζ̂r) is the added pertur-
bation to follow the semicircular trajectory as given in Eq.
6. From line-8 to line-11, the query for xr is performed to
know whether xr is adversarial or not. If xr is adversarial,
ζ̂r is replace by ζ̂adv to reduce the search range, and vice-
versa. The process of reducing the range is continued until
we obtain the desired xbt+1

within a certain accuracy.
Algorithm 4 shows the process of finding a better initial

boundary point from a set of random directions to the ad-
versarial region. If xk denotes any point in the adversarial
region, then the direction of xk from a source xs can be es-

Algorithm 3: BSSP
1 Inputs: Source image xs, indicator function ϕ(.),

non-adversarial point xc (ϕ(xc) = −1) on the
semicircle, adversarial sample at the intersection of the
boundary and the semicircle xbt , tolerance ϵ = 0.0001.

2 Output: new boundary point xbt+1 .
3 ζ̂c = (xc − xs)/∥(xc − xs)∥2 /* direction of

a non-adversarial point xc on the
semicircle from xs */

4 ζ̂adv = (xbt − xs)/∥(xbt − xs)∥2 /* direction
of an adversarial point xbt on the
semicircle from xs */

5 while True do
6 ζ̂r = (ζ̂c + ζ̂adv)/∥(ζ̂c + ζ̂adv)∥2
7 xr = xs + d(ζ̂r) /* to obtain xr on the

semicircle towards ζ̂r */
8 if ϕ(xr) = 1 then
9 ζ̂adv = ζ̂r

10 else
11 ζ̂c = ζ̂r

12 if ∥d(ζ̂adv)− d(ζ̂c)∥2 ≤ ϵ then
13 xbt+1 = xs + d(ζ̂adv)
14 break

timated as Θk = (xk − xs)/∥xk − xs∥2. For the targeted
attack, we randomly choose a set of K samples {xk}Kk=1 of
the target class and obtain a set of K directions {Θk}Kk=1

to the adversarial region. By using this set of random direc-
tions, we can get a better initial boundary point xb1 at the
cost of additional queries. We provide the explanation of
the Algorithm 4 as follows.

While the line-3 of Algorithm 4 finds the minimum ℓ2-
norm of perturbation required to make xs adversarial to-
wards Θ1

∥Θ1∥2
, line-4 finds the adversarial image in that di-

rection. The line-6 to line-12 is used to conduct an exhaus-
tive search to find the direction that offers the best initial
boundary point among the K directions. In finding the best
initial boundary point, for a direction Θi

∥Θi∥2
, line-7 adds the

current perturbation dbest towards Θi

∥Θi∥2
to obtain a per-

turbed xp. Then, line-8 checks whether xp is adversarial



Algorithm 4: Initialization
1 Inputs: Source image xs, a set of directions towards the

adversarial region {Θk}Kk=1, indicator function ϕ(.) of
target classier output.

2 Output: Initial boundary point xb1 .
3 r ← min{r > 0 : ϕ(xs + r ∗ Θ1

∥Θ1∥2
) = 1} /* to

find the minimum perturbation towards
Θ1

∥Θ1∥2
to make xs adversarial */

4 xb = xs + r ∗ Θ1
∥Θ1∥2

5 dbest = ∥xb − xs∥2
6 for i = 2 : K do
7 xp = xs + dbest ∗ Θi

∥Θi∥2
8 if ϕ(xp) = 1 then
9 xb1 ← BinarySearch(xs,xp, ϕ)

10 dnew = ∥xb1 − xs∥2
11 if dnew < dbest then
12 dbest = dnew

0 5000 10000 15000 20000
Number of queries

20

40

60

80

M
ed

ia
n 

2 p
er

tu
rb

at
io

n CGBA (K = 1)
CGBA-H (K = 1)
CGBA (K = 50)
CGBA-H (K = 50)

(a) VGG16

0 5000 10000 15000 20000
Number of queries

20

40

60

80

M
ed

ia
n 

2 p
er

tu
rb

at
io

n CGBA (K = 1)
CGBA-H (K = 1)
CGBA (K = 50)
CGBA-H (K = 50)

(b) ResNet101

0 5000 10000 15000 20000
Number of queries

10

20

30

40

50

60

70

M
ed

ia
n 

2 p
er

tu
rb

at
io

n CGBA (K = 1)
CGBA-H (K = 1)
CGBA (K = 50)
CGBA-H (K = 50)
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Figure 9: Performance comparison between a random initializa-
tion and the proposed initialization.

or not. If xp is adversarial, only then we conduct a binary
search to obtain a new boundary point, as shown in line-9,
that further improves the obtained perturbation dbest. This
process is continued to get the best boundary point among
the given K directions. Figure 9 compares the random ini-
tialization (K = 1) and initialization with Algorithm 4 for
K = 50 against VGG16, ResNet101 and ViT classifiers. It
is observed that the proposed initialization algorithm finds
a much better boundary point against the aforementioned
classifiers and thus notably improves the performance for
targeted attacks.

0 5000 10000 15000 20000
Number of queries

0

10

20

30

40

50

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

ResNet50
HSJA
GeoDA
TA
TriA

SurFree
CGBA
CGBA-H

(a) Non-targeted attack

0 5000 10000 15000 20000
Number of queries

0

20

40

60

80

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

ResNet50
HSJA
TA
AHA
CGBA
CGBA-H

(b) Targeted attack

0 5000 10000 15000 20000
Number of queries

0

10

20

30

40

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

VGG16
HSJA
GeoDA
TA
TriA

SurFree
CGBA
CGBA-H

(c) Non-targeted attack

0 5000 10000 15000 20000
Number of queries

0

20

40

60

80

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

VGG16
HSJA
TA
AHA
CGBA
CGBA-H

(d) Targeted attack

0 5000 10000 15000 20000
Number of queries

0

10

20

30

40

50
M

ed
ia

n 
2 p

er
tu

rb
at

io
n

ResNet101
HSJA
GeoDA
TA
TriA

SurFree
CGBA
CGBA-H

(e) Non-targeted attack

0 5000 10000 15000 20000
Number of queries

20

40

60

80

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

ResNet101
HSJA
TA
AHA
CGBA
CGBA-H

(f) Targeted attack

0 5000 10000 15000 20000
Number of queries

0

20

40

60

80

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

ViT
HSJA
GeoDA
TA
TriA

SurFree
CGBA
CGBA-H

(g) Non-targeted attack

0 5000 10000 15000 20000
Number of queries

10
20
30
40
50
60
70

M
ed

ia
n 

2 p
er

tu
rb

at
io

n

ViT
HSJA
TA
AHA
CGBA
CGBA-H

(h) Targeted attack

Figure 10: Variation of ℓ2-norm of perturbation with the number
of queries against ResNet50, VGG16, ResNet101 and ViT on Im-
ageNet.

B. Results on ImageNet

Figure 10 depicts the variation of median ℓ2-norms of
perturbation with queries for both non-targeted and tar-
geted attacks against ResNet50, VGG16, ResNet101 and
ViT. Based on these findings, it is evident that for non-
targeted attacks, both CGBA and CGBA-H outperform the
baseline methods significantly. In contrast, for targeted at-
tacks, while CGBA-H outperforms all the baselines, the ob-
tained perturbation using CGBA is expectedly higher when
the query budget is not sufficiently high due to the high cur-
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Figure 11: Experimental results of ASR against VGG16, ResNet101 and ViT on ImageNet using different methods.

vature of the boundary. However, with the increase in the
number of iterations and corresponding queries, the bound-
ary point gets closer to the source image, resulting in a flat-
ter decision boundary with respect to the viewpoint of the
source image. Consequently, with a sufficient query budget,
the proposed CGBA also outperforms the baselines.

Figure 11 shows the attack success rate (ASR) compari-
son of the proposed methods with the baselines for the dif-
ferent query budgets and threshold values. The first two
columns of the figure depict the obtained ASR for different
query budgets with a threshold value of 2.5 for the non-
targeted attack and 12 for the targeted attack, while the last
two columns show the obtained ASR for different threshold
values for a query budget of 20,000. From these experi-
mental results, we observe that CGBA and CGBA-H offer
significantly better performance over the baselines for these
three popular classifiers, as we have observed for ResNet50.

C. Results on CIFAR10

Our proposed attacks are not restricted to high-
dimensional datasets with a large number of classification

labels, such as ImageNet. This section further examines
their effectiveness in generating adversarial samples for
a low-dimensional dataset, CIFAR10, which contains ten
classification labels. To perform the experiments, rather
than using the dimension-reduced subspace, we consider
full-dimensional image space (full-space) to attack against
PreActResNet18 [4] and WRN40 [10] using the baselines
and the proposed methods. We randomly choose 1000 im-
ages for the non-targeted attack and 1000 pairs of images
for the targeted attack that are correctly classified by the
target classifier. The corresponding results are shown in Ta-
ble. 4. From this Table, CGBA outperforms all the base-
lines, as expected, for the non-targeted attack against Pre-
ActResNet18. On the other hand, for the non-targeted at-
tack against WRN40, while SurFree performs better with a
very low query budget, CGBA outperforms SurFree with a
sufficient query budget. However, for the targeted attack,
while CGBA-H performs better with smaller query bud-
gets, CGBA shows slightly better performance than CGBA-
H with an increase in the query budget. This observation
could be explained as follows. First of all, since the number



Non-targeted Targeted
Queries 1000 2500 5000 7500 10000 15000 20000 1000 2500 5000 7500 10000 15000 20000
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HSJA [1] 0.531 0.279 0.203 0.174 0.161 0.146 0.140 1.771 0.682 0.421 0.337 0.304 0.268 0.252
GeoDA [8] 2.41 1.87 1.526 1.349 1.296 1.176 1.116 - - - - - - -

TA [6] 0.502 0.274 0.199 0.178 0.166 0.150 0.144 1.657 0.670 0.408 0.337 0.301 0.272 0.256
TriA [9] 0.621 0.504 0.469 0.436 0.433 0.414 0.406 - - - - - - -

SurFree [7] 0.428 0.270 0.204 0.177 0.163 0.147 0.140 - - - - - - -
AHA [5] - - - - - - - 4.096 1.968 1.126 1.053 1.053 1.053 1.053
CGBA 0.409 0.237 0.184 0.163 0.152 0.140 0.135 2.012 0.645 0.391 0.321 0.291 0.262 0.247

CGBA-H 0.435 0.267 1.95 0.172 0.159 0.145 0.140 1.257 0.577 0.385 0.329 0.296 0.266 0.251

W
R

N
40

HSJA [1] 0.739 0.336 0.206 0.166 0.148 0.129 0.123 4.028 1.315 0.596 0.410 0.336 0.271 0.244
GeoDA [8] 3.241 2.243 1.677 1.491 1.387 1.264 1.162 - - - - - - -

TA [6] 0.714 0.334 0.209 0.169 0.149 0.132 0.125 3.736 1.229 0.571 0.396 0.330 0.272 0.250
TriA [9] 0.949 0.697 0.625 0.574 0.541 0.528 0.501 - - - - - - -

SurFree [7] 0.493 0.262 0.187 0.156 0.142 0.127 0.119 - - - - - -
AHA [5] - - - - - - - 5.372 2.709 1.359 1.081 1.044 1.041 1.041
CGBA 0.498 0.245 0.167 0.142 0.131 0.120 0.115 6.221 1.774 0.578 0.383 0.312 0.256 0.231

CGBA-H 0.537 0.259 0.172 0.148 0.135 0.122 0.116 2.690 0.878 0.465 0.351 0.302 0.257 0.238

Table 4: Median ℓ2-norm of perturbation for different query budgets of our proposed attacks and baselines on CIFAR10 dataset.
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Figure 12: Experimental results of ASR against PreActResNet18 and WRN40 on CIFAR10 using different methods.

of classes in the CIFAR10 dataset is much smaller, the ad-
versarial region for the targeted attack on CIFAR10 is much
wider in the 2D search plane as compared to the adversar-
ial region of the ImageNet dataset with 1000 classes. Sec-
ondly, with the increase in the number of queries, the ob-
tained boundary point is getting closer to the source image.
Thus, the curvature of the boundary becomes flatter from
the viewpoint of the source. Therefore, with a sufficiently
large query budget, which in turn requires a large number
of iterations, CGBA performs better on a low-dimensional
dataset like CIFAR10. This is consistent with our previous

observations that CGBA performs better on lower curvature
boundaries while CGBA-H can further adapt to high curva-
ture.

Moreover, the obtained ASR against the two classifiers
is shown in Figure 12. Figures 12(a-d) demonstrate the
variation of ASR with queries for a perturbation threshold
of 0.3 for the non-targeted attack and 2.5 for the targeted
attack. On the other hand, Figures 12(e-h) demonstrate
the obtained ASR with different threshold values. To de-
pict Figures 12(e-h), while we consider a query budget of
5000 for the non-targeted attack, we consider a query bud-



Methods HSJA [1] GeoDA [8] TA [6] TriA [9] SurFree [7] AHA [5] CGBA CGBA-H

PreActResNet18
Non-targeted 3281.2 16007 3293.7 5216.4 2867.5 - 2693.8 2866.0

Targeted 9056.2 - 8882.3 - - 19478.3 9742.0 7734.3

WRN40
Non-targeted 3704.9 19119 3876.5 7025.9 2881.4 - 2860.3 2948.9

Targeted 14322.7 - 13806.6 - - 23543.7 18443.9 11376.2

Table 5: AUC comparison against PreActResNet18 and WRN40 for a query budget of 10000 on CIFAR10.

get of 10000 for the targeted attack. We choose two dif-
ferent query budgets due to the faster convergence of the
non-targeted attack than the targeted attack. From these fig-
ures, it is observed that we get the expected improved per-
formance using our proposed methods. Furthermore, the
experimental results of AUC are shown in Table 5. The
obtained results demonstrate the consistency in the perfor-
mance of the proposed methods on different datasets.

D. BSSP versus BSNV
In this section, we compare binary search along the di-

rection of the estimated normal vector (BSNV) and bound-
ary search along a semicircular path (BSSP) to find a new
boundary point. First, we show the experimental evalua-
tion of these two methods in finding the new boundary point
with the queries spent to estimate the normal vector on the
boundary point. Then we provide a theoretical analysis to
further justify the improved efficiency of BSSP in compari-
son with BSNV.
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Figure 13: Impact of the normal vector estimation on the perfor-
mance of BSSP and BSNV in finding a new boundary point.

D.1. Impact of normal vector estimation

We demonstrate the impact of the normal vector estima-
tion on the performance of BSSP and BSNV in finding a
new boundary point in Figure 13. To depict this figure, we
consider the non-targeted attack against ResNet50 [3] for
1000 test images from ImageNet [2]. First, we estimate the
normal vector at the same initial boundary point xb1 con-
sidering different numbers of queries. Then, we use both
BSNV and the proposed BSSP to find a new boundary point
and compare the difference in the resultant perturbations. It
is clearly seen that while the performance of both methods

improves with the increase of queries spent for the normal
vector estimation as expected, BSSP consistently outper-
forms BSNV by a large margin.

D.2. Theoretical analysis

We theoretically verify the advantage of the BSSP algo-
rithm compared to BSNV in finding a new boundary point.
As BSSP is conducted in a 2D plane, we consider a hypo-
thetical parabolic boundary in the 2D plane to perform our
analysis for tractability. Let the source image xs be located
at the origin of a xy-coordinate plane spanned by (v̂t, η̂t)
at iteration t, as shown in Figure 14, where v̂t is the direc-
tion of the boundary point xbt from source xs and η̂t is the
estimated normal vector at xbt . Assume the boundary sep-
arating the benign and adversarial regions of xs in the 2D
plane is represented as a parabolic function:

y =
x2

4p
+ h, (9)

whose coordinate of the vertex is at (0, h) and the length of
the latus rectum is 4p. Therefore, the optimal perturbation
required to make xs adversarial is h at the given iteration t.

Let us assume the direction of the boundary point xbt

w.r.t. the x-axis is δt and the amount of perturbation in
that particular direction is rt = ∥xbt − xs∥2 at the t-th
iteration. Thus, the projection of perturbation in the direc-
tion of x-axis and y-axis is given as axt

= rt cos δt and
ayt = rt sin δt, respectively. Hence, by putting the values
of axt and ayt in Eq. 9, rt is related to δt as

rt =
2p sin δt
cos2 δt

[
1−

√
1− h

p
cot2 δt

]
. (10)

As can be inferred from Eq. 10, it is possible to find a
boundary point at the direction δt iff p ≥ h cot2 δt. Now
using Eq. 10, we have,

axt
= rt cos δt = 2p tan δt

[
1−

√
1− h

p
cot2 δt

]
(11)

ayt = rt sin δt = 2p tan2 δt

[
1−

√
1− h

p
cot2 δt

]
.

(12)



Figure 14: A parabolic boundary with vertex at (0, h), where xbt

represents the boundary point at t-th iteration, and the green and
blue points on the boundary denote the obtained boundary point
xbt+1 using BSSP and BSNV, respectively.

In this analysis, we consider two extreme scenarios for
both BSNV and BSSP: linear boundary and curved bound-
ary such that the line towards v̂t is tangent with the bound-
ary.

D.2.1 Finding boundary point using BSNV

The tangent of any point on the parabola is given by

dy

dx
=

x

2p
. (13)

Therefore, the slope of the line in the normal direction η̂t

on the boundary point (axt , ayt) can be expressed as

m = −2p

ax
. (14)

Hence, the next boundary point xbt+1 toward η̂t is located
on the line y = mx. Let (axt+1 , ayt+1) be the coordinate of
the boundary point xbt+1

on the xy-coordinate plane. Then,
(axt+1

, ayt+1
) can be obtained at the intersection point of

y = mx and y = x2

4p + h. Therefore, we have

(axt+1
, ayt+1

) =

(
2h/m

1 +
√
1− h

pm2

,
2h

1 +
√
1− h

pm2

)
,

(15)
where m = − 2p

ax
.

Case 1: Linear boundary (p = ∞). For this case, push-
ing the image xs towards the normal direction η̂t, the Eq. 15
will result in

(axt+1
, ayt+1

) = (0, h). (16)

Thus, we can conclude that the BSNV method finds the sub-
sequent boundary point with optimal perturbation, rt+1 =
h, if the boundary is linear and the normal vector estimate
is accurate. This explains the success of qFool and GeoDA
when the decision boundary can be well approximated as a
plane.

Figure 15: Obtaining a new boundary point xbt+1 using BSNV
when v̂t is tangent on the boundary at xbt for δt < 450 (left),
δt = 450 (middle) and δt > 450 (right). BSNV cannot find xbt+1

if δt > 450.

Case 2: Curved boundary (p = h cot2 δt). With this
condition, the line starting from the source xs with an an-
gle δt from the x-axis is the tangent with the boundary at
(axt , ayt). From Eq. 11 and Eq. 12, we have (ax, ay) =
(2p tan δt, 2p tan

2 δt). Thus, from Eq. 14, we get the slope
of line in the normal direction η̂t on the boundary point as

m = − 2p

2p tan δt
= − cot δt. (17)

Now, if we use the BSNV method to find xbt+1 , from
Eq. 15 we can find a valid boundary point xbt+1 , only if
pm2 ≥ h. Therefore, using the condition p = h cot2 δt and
Eq. 17, we get

δt ≤ 450. (18)

Thus, if the line in the direction of δt w.r.t. x-axis is
the tangent on xbt , the BSNV method will find the subse-
quent boundary point xbt+1

only if δt ≤ 450. Consider
the extreme condition when δt = 450, for which we have
m = −1 and p = h. Therefore, from Eq. 15, the coordinate
of the subsequent boundary point can be written as

(axt+1
, ayt+1

) = (−2h, 2h). (19)

The amount of perturbation of the obtained boundary point
xbt+1 is rt+1 = 2

√
2h, which is same as rt = 2

√
2p, and

the iterative querying process will not converge. So, we
can conclude that if p = h cot2 δt, finding the subsequent
boundary point using the BSNV method converges iif δt <
450 in this scenario, as shown in Figure 15.

D.2.2 Finding boundary point using BSSP

In this subsection, we theoretically analyze the amount of
perturbation required to make xs adversarial by using the
BSSP method to find the boundary point in the 2-D plane
spanned by (v̂t, η̂t). The boundary point (axt+1

, ayt+1
)

can be simply obtained by finding the intersection of the
parabolic boundary given in Eq. 9 and the circle specified
by the following equation.

(x− rt
2
cos δt)

2 + (y − rt
2
sin δt)

2 =
r2

4
.



Figure 16: Obtaining a new boundary point xbt+1 using BSSP
when v̂t is tangent on the boundary at xbt for δt < 450 (left), δt =
450 (middle) and δt > 450 (right). BSSP finds xbt+1 irrespective
of the boundary’s curvature.

Thus, we have

a2xt+1
+ (

a2xt+1

4p
+ h)2 − 2h cot δt

1 +
√
1− h

p cot2 δt
axt+1

− 2h

1 +
√
1− h

p cot2 δt
(
a2xt+1

4p
+ h) = 0. (20)

Case 1: Linear boundary (p = ∞). Under this condi-
tion, the coordinate of xbt+1

can be calculated by solving
the Eq. 20 as

(axt+1
, ayt+1

) = (0, h). (21)

Hence, the BSSP also finds the optimal boundary point
xbt+1 with minimum perturbation ∥xbt+1 − xs∥2 = h as
it is obtained by using BSNV for a linear boundary.

Case 2: Curved boundary (p = h cot2 δt). In this case,
Eq. 20 can be written as

a4xt+1

16h2
+ a2xt+1

− 2h cot δtaxt+1
+ h2 = 0. (22)

One solution of the above equation is the coordinate of the
current boundary point xbt . As the coefficients of the above
equation are real, there must be another real solution irre-
spective of the value of δt. Thus, for a given boundary point
xbt , the proposed BSSP method ensures finding the sub-
sequent boundary point xbt+1 irrespective of the value of
δt. As p = h cot2 δt and the curvature is related to the
latus rectum 4p, we can say, conversely, that the proposed
BSSP is guaranteed to find the next boundary point no mat-
ter what the boundary curvature is, and it is depicted in Fig-
ure 16. In contrast, as we have seen, BSNV cannot find a
new boundary point when δt > 450 under the condition of
p = h cot2 δt.

As a concrete example, consider the extreme conditions
that we consider for BSNV above, where the direction of
xbt from xs is a tangent at xbt and creates an angle δt =
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Figure 17: Performance Comparision for different values of pa-
rameter p.

450. Therefore, Eq. 20 satisfying these conditions can be
written as

a4xt+1

16h2
+ a2xt+1

− 2haxt+1 + h2 = 0. (23)

By solving Eq. 23, we can obtain the coordinate of the sub-
sequent boundary point xbt+1

as

(axt+1 , ayt+1) = (−0.4135h, 1.0427h). (24)

The perturbation of the new boundary point xbt+1 is

rt+1 =
√
(−0.4135h)2 + (1.0427h)2 = 1.1217h.

Hence, under the conditions of p = h cot2 δt and δt =
450, the amount of reduction in perturbation using BSSP as
compared to BSNV is obtained as

2
√
2h− 1.1217h

2
√
2h

= 60.3%.

D.2.3 Impact of different curvature

We further investigate the impact of the boundary curvature
on the performance of these two search algorithms. We have
already seen that these two methods achieve the same opti-
mal performance for the linear boundary (p = ∞). How-
ever, when p = h cos2 δt and δt = 450, BSSP can reduce
the perturbation by about 60% as compared to BSNV. Fig-
ure 17 shows the performance comparison of BSNV and
BSSP for different values of p (with smaller p correspond-
ing to higher curvature). We consider h = 10 and δt =



300, 450, 600 & 800 to obtain the solutions of the aforemen-
tioned equations for different values of p numerically. From
this figure, we observe that BSSP uniformly outperforms
BSNV, with dramatic improvement when the curvature is
high. Moreover, as shown clearly in Figure 17(c,d), while
BSNV fails when parameter p falls below a certain thresh-
old, BSSP remains functioning under such high curvature
settings.

E. Visualizing perturbation
In this section, we visualize obtained adversarial im-

ages and corresponding perturbations for different query
budgets for both non-targeted and targeted attacks against
ResNet50, VGG16 and ViT. We use test images from the
ILSVRC2012’s validation set [2] that are correctly classi-
fied by the target classifiers. In Figure 18, the first row
of each sub-figures demonstrates the source image ’Sea
urchin’ and crafted adversarial examples for different query
budgets by using CGBA for non-targeted attacks. While
the adversarial samples crafted against ResNet50 are mis-
classified as ’Rock-crab’, the obtained perturbations against
VGG16 and ViT are misclassified as ’Lionfish’. Moreover,
the second row of each of the sub-figures depicts amplified
(10 times) perturbations for different query budgets. Like-
wise, Figure 20 depicts the adversarial examples and cor-
responding perturbations of ’Lionfish”, crafted by CGBA-
H, that are misclassified as ’Sea urchin’ by different clas-
sifiers. From Figures 18 and 20, we can visualize how the
perturbations diminish with the increase of queries. Further-
more, Figures 19 and 21 show the difference of the obtained
amplified perturbations between different classifiers. From
these figures, it is observed that the crafted perturbations
vary with classifiers. Because of this variation in crafted
perturbations from one classifier to another, the obtained ad-
versarial image in one classifier is not directly transferable
to another in case of a decision-based attack.
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Figure 18: Obtained adversarial images and corresponding amplified perturbations with different query budgets against different classifiers
using non-targeted CGBA.
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Figure 19: Difference in crafted amplified perturbation in Figure 18 between different classifiers for a query budget of 5000.
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Figure 20: Obtained adversarial images and corresponding amplified perturbations with different query budgets against different classifiers
using targeted CGBA-H.
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Figure 21: Difference in crafted amplified perturbation in Figure 20 between different classifiers for a query budget of 10000.


