
Supplementary Material for:
Efficient 3D Semantic Segmentation with Superpoint Transformer

Damien Robert1, 2

damien.robert@ign.fr

Hugo Raguet3

hugo.raguet@insa-cvl.fr

Loic Landrieu2

loic.landrieu@ign.fr

1CSAI, ENGIE Lab CRIGEN, Stains, France
2 Univ Gustave Eiffel, IGN/ENSG, LASTIG, F-77454 Marne-la-Vallee, France

3INSA Centre Val-de-Loire Univ de Tours, LIFAT, France

a) Position b) Ground Truth c) Linearity, Planarity & Verticality

d) RGB e) Predictions & Errors f) Level-2

Figure 1: Interactive Visualization. Our interactive viewing tool allows for the manipulation and visualization of sample
point clouds colorized according to their position (a), semantic labels (b), selected geometric features (c), radiometry (d), and
to visualize our network’s prediction (e) and partitions (f).

In this document, we introduce our interactive visualiza-
tion tool (Section A-1), share our source code (Section A-2),
discuss limitations of our approach (Section A-3), provide
a description (Section A-4) and an analysis (Section A-5)
of all handcrafted features used by our method, detail the
construction of the superpoint-graphs (Section A-6) and the
partition process (Section A-7), and provide guidelines on
how to choose the partition’s hyperparameters (Section A-8).

Finally, we clarify our architecture parameters (Section A-9),
explore our model’s salability (Section A-10) and supervi-
sion (Section A-11), detail the class-wise performance of our
approach on each dataset (Section A-12), and the color maps
used in the illustrations of the main paper (Figure A-3).

(a) Position (b) Ground Truth (c) Linearity, Planarity & Verticality

(d) RGB (e) Predictions & Errors (f) Level-2

Figure A-1: Interactive Visualization. Our interactive viewing tool allows for the manipulation and visualization of sample
point clouds colorized according to their position (a), semantic labels (b), selected geometric features (c), radiometry (d), and
to visualize our network’s prediction (e) and partitions (f).

A-1. Interactive Visualization

We release for this project an interactive plotly visual-
ization tool that produces HTML files compatible with any
browser. As shown in Figure A-1, we can visualize samples
from S3DIS, KITTI-360, and DALES with different point
attributes and from any angle. These visualizations were
instrumental in designing and validating our model and we
hope that they will facilitate the reader’s understanding as
well.

A-2. Source Code

We make our source code publicly available at github.
com/drprojects/superpoint_transformer.
The code provides all necessary instructions for installing
and navigating the project, simple commands to reproduce
our main results on all datasets, ready-to-use pretrained
models, and ready-to-use notebooks.

Our method is developed in PyTorch and relies on Py-
Torch Geometric, PyTorch Lightning, and Hydra.

A-3. Limitations
Our model provides significant advantages in terms of

speed and compacity but also comes with its own set of
limitations.

Overfitting and Scaling. The superpoint approach drasti-
cally simplifies and compresses the training sets: the 274m
3D points of S3DIS are captured by a geometry-driven mul-
tilevel graph structure with fewer than 1.25m nodes. While
this simplification favors the compacity and speed of the
training of the model, this can lead to overfitting when using
SPT configurations with more parameters, as shown in Sec-
tion A-10. Scaling our model to millions of parameters may
only yield better results for training sets that are sufficiently
large, diverse, and complex.

Errors in the Partition. Object boundaries lacking obvi-
ous discontinuities, such as curbs vs. roads or whiteboards
vs. walls, are not well recovered by our partition. As parti-
tion errors cannot be corrected with our approach, this may
lead to classification errors. To improve this, we could re-
place our handcrafted point descriptors (Section A-4) with

features directly learned for partitioning [11, 9]. However,
such methods significantly increase the preprocessing time,
contradicting our current focus on efficiency. In line with
[8, 17], we use easy-to-compute yet expressive handcrafted
features. Our model SPT-nano without point encoder relies
purely on such features and reaches 70.8 mIoU on S3DIS
6-Fold with only 27k param, illustrating this expressivity.

Learning Through the Partition. The idea of learning
point and adjacency features directly end-to-end is a promis-
ing research direction to improve our model. However, this
implies efficiently backpropagating through superpoint hard
assignments, which remains an open problem. Furthermore,
such a method would consider individual 3D points during
training, which would necessitate to perform the partitioning
step multiple times during training time, which may negate
the efficiency of our method

Predictions. Finally, our method predicts labels at the su-
perpoint level P1 and not individual 3D points. Since this
may limit the maximum performance achievable by our ap-
proach, we could consider adding an upsampling layer to
make point-level predictions. However, this does not appear
to us as the most profitable research direction. Indeed, this
may negate some of the efficiency of our method. Further-
more, as shown in the ablation study 4.3 d) of the main paper,
the “oracle” model outperforms ours by a large margin. This
may indicate that performance improvements should primar-
ily be searched in superpoint classification rather than in
improving the partition.

Our model also learns features for superpoints and not
individual 3D points. This may limit downstream tasks
requiring 3D point features, such as surface reconstruction
or panoptic segmentation. However, we argue that specific
adaptations could be explored to perform these tasks at the
superpoint level.

A-4. Handcrafted Features
Our method relies on simple handcrafted features to build

the hierarchical partition and learn meaningful points and
adjacency relationships. In this section, we provide further
details on the definition of these features and how to com-
pute them. It is important to note that these features are
only computed once during preprocessing, and thanks to
our optimized implementation, this step only takes a few
minutes.

Point Features. We can associate each 3D point with a set
of 8 easy-to-compute handcrafted features, described below.

• Radiometric features (3 or 1): RGB colors are available
for S3DIS and KITTI-360, and intensity values for

DALES. These radiometric features are normalized to
[0, 1] at preprocessing time. For KITTI-360, we find
that using the HSV color model yields better results.

• Geometric features (5): We use PCA-based features:
linearity, planarity, scattering, [5] and verticality [7],
computed on the set of 50-nearest neighbors of each
point. This neighbor search is only computed once
during preprocessing and is also necessary to build
the graph G. We also define elevation as the distance
between a point and the ground below it. Since the
ground is neither necessarily flat nor horizontal, we use
the RANSAC algorithm [6] on a coarse subsampling
of the scene to find a ground plane. We normalize
the elevation by dividing it by 4 for S3DIS and 20 for
DALES and KITTI-360.

At preprocessing time, we only use radiometric and ge-
ometric features to compute the hierarchical partition. At
training time, SPT computes point embeddings by mapping
all available point features, along with the normalized point
position to a vector of size Dpoint with a dedicated MLP ϕ0

enc.
We provide an illustration of the geometric point features

in Figure A-2, to help the reader apprehend these simple
geometric descriptors.

Adjacency Features. The relationship between adjacent
superpoints provides crucial information to leverage their
context. For each edge of the superpoint-graph, we compute
the 18 following features:

• Interface features (7): All adjacent superpoints share an
interface, i.e. pairs of points from each superpoint that
are close and share a line of sight. SuperpointGraph
[13] uses the Delaunay triangulation of the entire point
cloud to compute such interfaces, while we propose
a faster heuristic approach in Section A-6 called the
Approximate Superpoint Gap algorithm. Each pair of
points of an interface defines an offset, i.e. a vector
pointing from one superpoint to its neighbor. We com-
pute the mean offset (dim 3), the mean offset length
(dim 1), and the standard deviation of the offset in each
canonical direction (dim 3).

• Ratio features (4): As defined in [13], we characterize
each pair of adjacent superpoints with the ratio of their
lengths, surfaces, volumes, and point counts.

• Pose features (7): For each superpoint, we define a nor-
mal vector as its principal component with the smallest
eigenvalue. We then characterize the relative position
between two superpoints with the cosine of the angle
between the superpoint normal vectors (dim: 1) and
between each of the two superpoints’ normal and the

(a) Input (b) Linearity (c) Planarity

(d) Scattering (e) Verticality (f) Elevation

Figure A-2: Point Geometric Features. Given an input cloud (a), the computed PCA-based geometric features (b, c, d, e) and
distance to the ground (f) offer a simple characterization of the local geometry around each point.

mean offset direction (dim: 2). Additionally, the off-
set between the centroids of the superpoints is used to
compute the centroid distance (dim: 1) and the unit-
normalized centroid offset direction (dim: 3).

Note that the mean offset and the ratio features are not
symmetric and imply that the edges of the superpoint-graphs
are oriented. As mentioned in Section 3.3, a network ϕi

adj
maps these handcrafted features to a vector of size Dkey +
Dque + Dval, for each level i ≥ 1 of the encoder and the
decoder.

A-5. Influence of Handcrafted Features

In Table A-1, we quantify the impact of the handcrafted
features detailed in Section A-4 on performance. To this end,
we retrain SPT without each feature group and evaluate the
prediction on S3DIS Area 5.

a) Point Features. Our experiments show that removing
radiometric features has a strong impact on performance,
with a drop of 2.7 to 4.0 mIoU. In contrast, removing ge-
ometric features results in a performance drop of 0.7 on
S3DIS, but 4.1 on KITTI-360.

We observe that both outdoor datasets strongly benefit
from local geometric features, which we hypothesize is due

Table A-1: Ablation on Handcrafted Features. Impact of
handcrafted features on the mIoU for all tested datasets.

Experiment S3DIS KITTI DALES
6-Fold 360 Val

Best Model 76.0 63.5 79.6

a) Point Features

No radiometric feat. -2.7 -4.0 -1.2
No geometric feat. -0.7 -4.1 -1.4

b) Adjacency Features

No interface feat. -0.2 -0.6 -0.7
No ratio feat. -1.1 -2.2 -0.4
No pose feat. -5.5 -1.2 -0.8

c) Room Features

Room-level samples -3.8 - -
Normalized Room pos. -0.7 - -

to their lower resolution and noise level. These results indi-
cate that radiometric features play an important role for all
datasets and that geometric features may facilitate learning
on noisy or subsampled datasets.

b) Adjacency Features. The analysis of the impact of ad-
jacency features on our model’s performance indicates that
they play a crucial role in leveraging contextual information
from superpoints: removing all adjacency features leads to
a significant drop of 3.0 to 6.3 mIoU points on the datasets,
as shown in 4.3 b) of the main paper. Among the different
types of adjacency features, pose features appear particularly
useful in characterizing the adjacency relationships between
superpoints of S3DIS, while interface features have a smaller
impact. These results suggest that the relative pose of objects
in the scene may have more influence on the 3D semantic
analysis performed by our model than the precise character-
ization of their interface. On the other hand, interface and
ratio features seem to have more impact on outdoor datasets,
while the pose information seems to be less informative in
the semantic understanding of the scene.

c) S3DIS Room Partition. The S3DIS dataset is divided
into individual rooms aligned along the x and y axes. This
setup simplifies the classification of classes such as walls,
doors, or windows as they are consistently located at the edge
of the room samples. Some methods also add normalized
room coordinates to each points. However, we argue that
this partition may not generalize well to other environments,
such as open offices, industrial facilities, or mobile mapping
acquisitions, which cannot naturally be split into rooms.

To address this limitation, we use the absolute room po-
sitions to reconstruct the entire floor of each S3DIS area
[19, 3]. This enables our model to consider large multi-room
samples, resulting in a performance increase of 3.8 points.
This highlights the advantage of capturing long-range contex-
tual information. Additionally, we remark that SPT performs
better without using room-normalized coordinates, which
may lead to overfitting and poor performance on layouts that
deviate from the room-based structure of the S3DIS dataset
such as large amphitheaters.

A-6. Superpoint-Graphs Computation
The Superpoint Graph method by Landrieu and Si-

monovsky [13] builds a graph from a point cloud using
Delaunay triangulation, which can take a long time for large
point clouds. In contrast, our approach connects two super-
points in Pi, where i ≥ 1 if their closest points are within a
distance gap ϵi > 0. However, computing pairwise distances
for all points is computationally expensive. We propose a
heuristic to approximately find the closest pair of points for
two superpoints, see Algorithm A-1. We also accelerate the
computation of adjacent superpoints by approximating only
for superpoints with centroids closer than the sum of their
radii plus the gap distance. This approximation helps to
reduce the number of computations required for adjacency
computation, which leads to faster processing times. All
steps involved in the computation of our superpoint-graph

are implemented on the GPU to further enhance computa-
tional efficiency.

Algorithm A-1 Approximate Superpoint Gap

Input: superpoints p1 and p2, num steps
c1 ← centroid(p1)
c2 ← centroid(p2)
for s ∈ num steps do

c2 ← argminp∈p2 ∥c1 − p∥
c1 ← argminp∈p1 ∥c2 − p∥

end for
return ∥c1 − c2∥

Recovering the interface between two adjacent super-
points as evoked in Section A-4 involves a notion of visi-
bility: we connect points from each superpoint which are
facing each other. This can be a challenging and ambigu-
ous problem, which SuperPoint Graph [12] tackles using a
Delaunay triangulation of the points. However, this method
is impractical for large point clouds. To address this issue,
we propose a heuristic approach with the following steps: (i)
first, we use the Approximate Superpoint Gap algorithm to
compute the approximate nearest points for each superpoint.
Then, we restrict the search to only consider points within a
certain distance of the nearest points. Finally, we match the
points by sorting them along the principal component of the
selected points.

A-7. Details on Hierarchical Partitions
We present here a more detailed explanation of the hi-

erarchical partition process. We define for each point c of
C a feature fc of dimension D, and G := (C, E , w) is the
k-nn adjacency between the points, with w ∈ RE

+ a nonnega-
tive proximity value. Our goal is to compute a hierarchical
multilevel partition of the point cloud into superpoints ho-
mogeneous with respect to f at increasing coarseness.

Piecewise Constant Approximation on a Graph. We
first explain how to compute a single-level partition of the
point cloud. We consider the pointwise features fc as a D-
dimensional signal f ∈ RD×|C| defined on the nodes of the
weighted graph G := (C, E , w). We first define an energy
J (e; f,G, λ) measuring the fidelity between a vertex-valued
signal e ∈ RD×|C| and the length of its contours, defined as
the weight of the cut between its constant components [12]:

J (e; f,G, λ) := ∥e− f∥2 + λ
∑

(u,v)∈E

wu,v [eu ̸= ev] ,

(A-1)

with λ ∈ R+ a regularization strength and [a ̸= b] the
function equals to 0 if a = b and 1 otherwise. Minimizers of

J are approximations of f that are piecewise constant with
respect to a partition with simple contours in G.

We can characterize such signal e ∈ RD×|C| by the
coarsest partition Pe of P and its associated variable fe ∈
RD×|Pe| such that e is constant within each segment p of
Pe with value fe

p . The partition Pe also induces a graph
Ĝe := (Pe, Ee, we) with Ee linking the component of Pe

adjacent in G and we the weight of the cut between adjacent
elements of P e:

Ee := {(U, V) | U, V ∈ Pe, (U × V) ∩ E ̸= ∅} (A-2)

For (U, V) ∈ Ee, we
U,V :=

∑
(u,v)∈U×V ∩E

wu,v (A-3)

We denote by partition (e) the function mapping e to
these uniquely defined variables:

fe,Pe, Ĝe := partition (e) . (A-4)

Point Cloud Hierarchical Partition. A set of partitions
P := [P0, · · · ,Pi] defines a hierarchical partition of C
with I levels if P0 = C and Pi+1 is a partition of Pi for
i ∈ [0, I − 1]. We propose to use the formulations above
to define a hierarchical partition of the point cloud C char-
acterized by a list λ1, · · · , λI of nonnegative regularization
strengths defining the coarseness of the successive partitions.
In particular, We chose λ1 such that |P1|/|P0 ∼ 30 in our
experiments.

We first define Ĝ0 as the point-level adjacency graph Ĝ
and f0 as f . We can now define the levels of a hierarchical
partition Pi for i ∈ [1, I]:

fi,Pi, Ĝi := partition(argmin
e∈RD×|Pi−1|

J
(
e; fi−1, Ĝi−1, λi−1

)
).

(A-5)

Given that the optimization problems defined in Eq. (A-5)
for i > 1 operate on the component graphs Ĝi, which are
smaller than Ĝ0, the first partition is the most demanding in
terms of computation.

Note that we used the hat notation Ĝi, because these
graphs are only used for computing the hierarchical parti-
tions Pi, and should be distinguished from the the superpoint
graphs Gi on which is based our self-attention mechanism,
constructed from Pi as explained in Section A-6.

A-8. Parameterizing the Partition
We define G as the k = 10-nearest neighbor adjacency

graph and set all edge weights w to 1. The point features fp
whose piecewise constant approximation yields the partition
are of three types: geometric, radiometric, and spatial.

Geometric features ensure that the superpoints are geo-
metrically homogeneous and with simple shapes. We use

Table A-2: Model Configuration. We provide the detailed
architecture of the SPT-X architecture. In this paper, we use
X = 64 and X = 128.

Parameter Value

Handcrafted features
Dhf

point Dradio
point +Dgeof

point

Dhf
adj 18

Embeddings sizes
Dpoint 128
Dadj 32

Transformer blocks
Dval X
Dkey 4
blocks encoder 3
blocks decoder 1
heads 16

MLPs
ϕi

adj [Dhf
adj, Dadj, Dadj, 3Dadj]

ϕ0
enc [Dhf

point +D
pos
point, 32, 64, Dpoint]

ϕ1
enc [Dpoint +D

pos
point, Dval, Dval]

ϕ2
enc [Dval +D

pos
point, Dval, Dval]

ϕ1
dec [Dval +Dval +D

pos
point, Dval, Dval]

the normalized dimensionality-based method described in
Section A-4. Radiometric features encourage the border of
superpoints to follow the color contrast of the scene and are
either RGB or intensity values; they must be normalized
to fall in the [0,1] range. Lastly, we can add to each point
their spatial coordinates with a normalization factor µ in
m−1 to limit the size of the superpoints. We recommend
setting µ as the inverse of the maximum radius expected for
a superpoint: the largest sought object (facade, wall, roof) or
an application-dependent constraint.

The coarseness of the partitions depends on the regular-
ization strength λ as defined in Section ??. Finer partitions
should generally lead to better results but to an increase in
training time and memory requirement. We chose a ratio
| P0 | / | P1 |∼ 30 across all datasets as it proved to be a
good compromise between efficiency and precision. Depend-
ing on the desired trade-off, different ratios can be chosen
by trying other values of λ.

A-9. Implementation Details

We provide the exact parameterization of the SPT archi-
tecture used for our experiments. All MLPs in the architec-
ture use LeakyReLU activations and GraphNorm [2] normal-
ization. For simplicity, we represent an MLP by the list of its
layer widths: [in channels, hidden channels, out channels].

Point Input Features. We refer here to the dimension
of point positions, radiometry, and geometric features as
Dpos

point = 3, Dradio
point , and Dgeof

point = 4 respectively. As seen in
Section A-4, S3DIS and KITTI-360 use Dradio

point = 3, while
DALES uses Dradio

point = 1.

Model Architecture. The exact architecture SPT-64 used
for S3DIS and DALES is detailed in Table A-2. The other
models evaluated are SPT-16, SPT-32, SPT-128 (used for
KITTI-360), and SPT-256, which use the same parameters
except for Dval.

SPT-nano. For SPT-nano, we use and Dval = 16, Dadj =
16, and Dkey = 2. As SPT-nano does not compute point
embedding, it does not use ϕ0, and we set up ϕ1

enc as [Dhf
point+

Dpos
point, Dval, Dval].

A-10. Model Scalability

We study the scalability of SPT by comparing models
with different parameter counts on each dataset. It is im-
portant to note that the superpoint approach drastically com-
presses the training set, which can lead to overfitting, see
Section A-3. For example, as illustrated in Table A-3, SPT-
128 with Dval = 128 (777k param.) performs 1.4 points
below Dval = 64 on S3DIS.

We report a similar behavior for other hyperparameters:
in Table A-4, Dkey = 8 instead of 4 incurs a drop of 1.0,
while in Table A-5, Nheads = 32 instead of 16 a drop of
0.1 point. For the larger KITTI-360 dataset (13m nodes),
Dval = 128 performs 1.9 points above Dval = 64, but 5.4
points above Dval = 256 (2.7m param.).

Table A-3: Impact of Model Scaling. Impact of model size
for each dataset.

Model Size S3DIS KITTI DALES
×106 6-Fold 360 Val

SPT-32 0.14 74.5 60.6 78.7
SPT-64 0.21 76.0 61.6 79.6
SPT-128 0.77 74.6 63.5 78.8
SPT-256 1.80 74.0 58.1 77.6

Table A-4: Impact of Query-Key Dimension. Impact of
Dkey on S3DIS 6-Fold.

Dkey 2 4 8 16

SPT-64 75.6 76.0 75.0 74.7

Table A-5: Impact of Heads Count. Impact of the number
of heads Nhead on the S3DIS 6-Fold performance.

Nhead 4 8 16 32

SPT-64 74.3 75.2 76.0 75.9

A-11. Hierarchical Supervision
We explore, in Table A-6, alternatives to our hierarchical

supervision introduced in Section 3.3 : predicting the most
frequent label for P1 and the distribution for P2. We use
“freq-Pi” to refer to the prediction of the most frequent label
applied the Pi partition. Similarly, “dist-Pi” denotes the
prediction of the distribution of labels within each superpoint
of the partition Pi.

We observe a consistent improvement across all datasets
by adding the dist-Pi supervision. This illustrates the bene-
fits of supervising higher-level partitions, despite their lower
purity. Moreover, supervising P1 with the distribution rather
than the most frequent label leads to a further performance
drop. This validates our choice to consider P1 superpoints
as sufficiently pure to be supervised using their dominant
label.

Table A-6: Ablation on Supervision. Impact of our hierar-
chical supervision for each dataset.

Loss S3DIS KITTI DALES
6-Fold 360 Val

freq-Pi-P1 dist-Pi-P2 76.0 63.5 79.6

freq-P1 -0.2 -0.8 -0.8
dist-Pi-P1 -0.8 -1.3 -0.8

A-12. Detailed Results
We report in Table A-7 the class-wise performance across

all datasets for SPT and other methods for which this in-
formation was available. As previously stated, SPT per-
forms close to state-of-the-art methods on all datasets, while
being significantly smaller and faster to train. By design,
superpoint-based methods can capture long-range interac-
tions and their predictions are more spatially regular than
point-based approaches. This may explain the performance
of SPT on S3DIS, which encompasses large, geometrically
homogeneous objects or whose identification requires long-
range context understanding, such as ceiling, floor, columns,
and windows. For all datasets, results show that some
progress could be made in analyzing smaller objects with
intricate geometries. This suggests that a more powerful
point-level encoding may be beneficial.

Table A-7: Class-wise Performance. Class-wise mIoU across all datasets for our Superpoint Transformer .

S3DIS Area 5
Method mIoU ceiling floor wall beam column window door chair table bookcase sofa board clutter

PointNet [15] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SPG [13] 58.4 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
MinkowskiNet [4] 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
SPG + SSP [11] 61.7 91.9 96.7 80.8 0.0 28.8 60.3 57.2 85.5 76.4 70.5 49.1 51.6 53.3
KPConv [19] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
PointTrans.[20] 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
DeepViewAgg [18] 67.2 87.2 97.3 84.3 0.0 23.4 67.6 72.6 87.8 81.0 76.4 54.9 82.4 58.7
Stratified PT [10] 72.0 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0

SPT 68.9 92.6 97.7 83.5 0.2 42.0 60.6 67.1 88.8 81.0 73.2 86.0 63.1 60.0
SPT-nano 64.9 92.4 97.1 81.6 0.0 38.2 56.4 58.6 86.3 77.3 69.6 82.5 50.5 53.4

S3DIS 6-FOLD

PointNet [15] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
SPG [13] 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
ConvPoint [1] 68.2 95.0 97.3 81.7 47.1 34.6 63.2 73.2 75.3 71.8 64.9 59.2 57.6 65.0
MinkowskiNet [4, 18] 69.5 91.2 90.6 83.0 59.8 52.3 63.2 75.7 63.2 64.0 69.0 72.1 60.1 59.2
SPG + SSP [11] 68.4 91.7 95.5 80.8 62.2 54.9 58.8 68.4 78.4 69.2 64.3 52.0 54.2 59.2
KPConv [19] 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
DeepViewAgg [18] 74.7 90.0 96.1 85.1 66.9 56.3 71.9 78.9 79.7 73.9 69.4 61.1 75.0 65.9

SPT 76.0 93.9 96.3 84.3 71.4 61.3 70.1 78.2 84.6 74.1 67.8 77.1 63.6 65.0
SPT-nano 70.8 93.1 96.0 80.9 68.4 54.0 62.2 71.3 76.3 70.8 63.3 74.3 51.9 57.6

KITTI-360 Val

Method mIoU ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

.

tr
af

fic
si

g.

ve
ge

ta
tio

n

te
rr

ai
n

pe
rs

on

ca
r

tr
uc

k

m
ot

or
cy

cl
e

bi
cy

cl
e

MinkowskiNet [4, 18] 54.2 90.6 74.4 84.5 45.3 42.9 52.7 0.5 38.6 87.6 70.3 26.9 87.3 66.0 28.2 17.2
DeepViewAgg [18] 57.8 93.5 77.5 89.3 53.5 47.1 55.6 18.0 44.5 91.8 71.8 40.2 87.8 30.8 39.6 26.1

SPT 63.5 93.3 79.3 90.8 56.2 45.7 52.8 20.4 51.4 89.8 73.6 61.6 95.1 79.0 53.1 10.9
SPT-nano 57.2 91.7 74.7 87.8 49.3 38.8 49.0 12.2 39.2 88.0 69.5 39.9 94.2 80.1 33.7 10.4

DALES
Method mIoU ground vegetation car truck power line fence pole building

PointNet++ [16] 68.3 94.1 91.2 75.4 30.3 79.9 46.2 40.0 89.1
ConvPoint [1] 67.4 96.9 91.9 75.5 21.7 86.7 29.6 40.3 96.3
SPG [13] 60.6 94.7 87.9 62.9 18.7 65.2 33.6 28.5 93.4
PointCNN [14] 58.4 97.5 91.7 40.6 40.8 26.7 52.6 57.6 95.7
KPConv [19] 81.1 97.1 94.1 85.3 41.9 95.5 63.5 75.0 96.6

SPT 79.6 96.7 93.1 86.1 52.4 94.0 52.7 65.3 96.7
SPT-nano 75.2 96.5 92.6 78.1 35.8 92.1 50.8 59.9 96.0

S3DIS

ceiling floor wall beam column

window door chair table bookcase

sofa board clutter unlabeled

KITTI-360

road sidewalk building wall fence

pole traffic light traffic sign vegetation terrain

person car truck motorcycle bicycle

ignored

DALES

ground vegetation car truck power line

fence pole building unknown

Figure A-3: Colormaps.

References
[1] Alexandre Boulch. ConvPoint: Continuous convolutions for

point cloud processing. Computers & Graphics, 2020.
[2] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu,

and Liwei Wang. GraphNorm: A principled approach to
accelerating graph neural network training. ICML, 2021.

[3] Thomas Chaton, Nicolas Chaulet, Sofiane Horache, and Loic
Landrieu. Torch-Points3D: A modular multi-task framework
for reproducible deep learning on 3D point clouds. 3DV,
2020.

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal ConvNets: Minkowski convolutional neural
networks. CVPR, 2019.

[5] Jérôme Demantké, Clément Mallet, Nicolas David, and Bruno
Vallet. Dimensionality based scale selection in 3D LiDAR
point clouds. In Laserscanning, 2011.

[6] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 1981.

[7] Stéphane Guinard and Loic Landrieu. Weakly supervised
segmentation-aided classification of urban scenes from 3D
LiDAR point clouds. ISPRS Workshop, 2017.

[8] Pai-Hui Hsu and Zong-Yi Zhuang. Incorporating handcrafted
features into deep learning for point cloud classification. Re-
mote Sensing, 2020.

[9] Le Hui, Jia Yuan, Mingmei Cheng, Jin Xie, Xiaoya Zhang,
and Jian Yang. Superpoint network for point cloud overseg-
mentation. ICCV, 2021.

[10] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3D point cloud segmentation. CVPR, 2022.

[11] Loic Landrieu and Mohamed Boussaha. Point cloud overseg-
mentation with graph-structured deep metric learning. CVPR,
2019.

[12] Loic Landrieu and Guillaume Obozinski. Cut pursuit: fast
algorithms to learn piecewise constant functions. AISTATS,
2016.

[13] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. CVPR,
2018.

[14] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on χ-transformed
points. NeurIPS, 2018.

[15] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. CVPR, 2017.

[16] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a
metric space. NeurIPS, 2017.

[17] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representa-
tion for point clouds. CVPR, 2022.

[18] Damien Robert, Bruno Vallet, and Loic Landrieu. Learn-
ing multi-view aggregation in the wild for large-scale 3D
semantic segmentation. CVPR, 2022.

[19] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. KPConv: Flexible and deformable convolution for
point clouds. ICCV, 2019.

[20] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. ICCV, 2021.

