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1. Ablation Study
Multi-View & End-to-End. The quantitative abla-

tion results on ScanNet [2] and MegaDepth [8] confirm that
the full version of our method achieves highest performance
(Tabs. 1 and 2). Fig. 5 shows qualitative results of the abla-
tion experiments on Matterport3D [1]. Clearly, multi-view
matching and end-to-end training support the correspon-
dence reasoning and improve camera alignment, despite the
extreme viewpoint changes.

Transl. error AUC [%] ↑ Rot. error AUC [%] ↑
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

Ours w/o multi-view 24.9 42.5 59.6 60.7 75.3 85.0
Ours w/o end-to-end 23.7 40.4 56.8 57.5 73.7 84.4
Ours 26.9 45.6 63.0 64.2 78.8 87.7

Table 1. Ablation study on multi-view indoor pose estimation on
ScanNet.

Transl. error AUC [%] ↑ Rot. error AUC [%] ↑
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

Ours w/o multi-view 50.2 60.9 70.5 64.4 75.7 84.1
Ours w/o end-to-end 49.9 60.8 70.5 61.6 74.7 84.2
Ours 52.1 63.0 72.5 66.7 77.8 85.9

Table 2. Ablation study on multi-view outdoor pose estimation on
MegaDepth.

Variable Image Overlap. Tab. 3 extends the multi-
view pose estimation evaluation to a setting with reduced
image overlap. It shows that our method achieves better
pose estimation results than the baselines also in this setting.

2. Qualitative Results
Figs. 3 to 5 show additional qualitative results on Scan-

Net, MegaDepth and Matterport3D. Lower reprojection er-
rors demonstrate that our matches give rise to more accu-
rate pose estimation, even in texture-less areas (e.g., Fig. 3
sample 2) or across strong appearance changes (e.g., Fig. 4
sample 1).

Transl. error AUC [%] ↑ Rot. error AUC [%] ↑
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

Mutual nearest neighbor 8.5 17.8 31.0 33.0 48.4 62.8
SuperGlue [11] 21.3 37.5 53.7 54.2 71.0 82.6
LoFTR [12] 20.6 36.9 53.7 57.3 72.0 82.0
COTR [5] cross-dataset 10.9 22.4 36.9 38.8 53.6 66.3
3DG-STFM [10] 22.0 38.7 55.5 57.0 72.7 83.0
Ours 26.9 45.6 63.0 64.2 78.8 87.7

Mutual nearest neighbor 3.4 8.1 16.9 12.7 23.6 38.1
SuperGlue [11] 15.8 29.1 44.3 34.6 52.1 67.3
LoFTR [12] 15.8 28.5 43.1 35.6 51.6 65.1
COTR [5] cross-dataset 5.4 11.9 22.2 17.4 29.0 42.6
3DG-STFM [10] 15.4 28.1 43.0 34.3 50.3 64.5
Ours 20.9 36.6 53.0 42.8 60.0 73.6
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Table 3. Multi-view indoor pose estimation using variable image
overlap (range 1: [0.4, 0.8], range 2: [0.25, 0.5]) on ScanNet;
“cross-dataset” indicates that COTR was trained on MegaDepth.

3. Cross-Dataset Results

Pose error AUC [%] ↑
@5◦ @10◦ @20◦

SuperGlue [11] 38.7 59.1 75.8
LoFTR [12] 43.5 63.5 78.6
COTR [5] 34.4 54.7 71.8
3DG-STFM [10] 43.4 63.4 78.4
Ours 46.7 65.4 79.3

Table 4. Cross-dataset evaluation on two-view pose-estimation on
YFCC100M. Models trained on MegaDepth.

Pose error AUC [%] ↑
@5◦ @10◦ @20◦

SuperGlue [11] 16.7 33.7 51.1
LoFTR [12] 17.7 34.7 51.1
COTR [5] 11.8 26.5 42.5
3DG-STFM [10] 16.1 32.3 49.2
Ours 18.8 36.4 52.8

Table 5. Cross-dataset evaluation on two-view pose-estimation on
ScanNet. Models trained on MegaDepth.

Tabs. 4 and 5 list cross-dataset results on two-view pose
estimation, where the models are trained on MegaDepth and
tested on YFCC100M [13] and ScanNet. It shows that our



method is able to transfer to different datasets.

4. Matching Metrics
Following the detector-based method SuperGlue, we

compute precision (P) and matching score (MS) [11]. Our
end-to-end approach learns matching and outlier filtering in
one step, hence, in contrast to the baselines, it does not need
outlier filtering with RANSAC to estimate poses. Tab. 6
shows that we achieve comparable or higher precision and
matching score than SuperGlue with RANSAC.

RANSAC P [%] ↑ MS [%] ↑
SuperGlue [11] 2-view ✓ 93.8 (91.3) 19.3 (38.6)
Ours 4-view ✗ 94.0 19.6
Ours 5-view ✗ 94.0 19.4
Ours 6-view ✗ 93.9 19.8

Table 6. Matching metrics on ScanNet. Our end-to-end method
learns feature matching and outlier filtering in one step, hence,
it does not require RANSAC and yields matches of similar or
higher precision and matching score compared to SuperGlue with
RANSAC. Parentheses indicate SuperGlue metrics w/o RANSAC.

This evaluation (Tab. 6) is not defined for the detector-
free methods (as explained in [12]), therefore, we pro-
vide an alternative evaluation, which is applicable to the
detector-free methods: Fig. 1 visualizes the trade-off be-
tween the precision of matches and the pose estimation
performance for increasing confidence thresholds (lower
bound) starting at 0 until precision saturates. The curves are
computed on the ScanNet image pairs from two-view pose
estimation (main paper Section 4.1). Clearly, our method
produces matching configurations with the best trade-off
between precision and value for pose estimation. The base-
line COTR does not provide confidences, hence its curve
boils down to a point: 76.8% precision at AUC@20◦of
42.5%.

5. Matching Runtime
Tab. 7 lists the matching runtime for increasing number

of views, measured on a Nvidia GeForce RTX 2080. It
shows that joint multi-view matching is faster than match-
ing the corresponding pairs with SuperGlue. The savings
stem from fewer intra-frame, self-attention GNN messages
in multi-view matching compared to pairwise (see Sec. 8).

2-view 4-view 5-view 6-view 8-view
=̂ 1 pair =̂ 6 pairs =̂ 10 pairs =̂ 15 pairs =̂ 28 pairs

SuperGlue [11] 45ms 190ms 315ms 470ms 849ms
Ours 45ms 181ms 260ms 352ms 589ms

Table 7. Matching runtime (excluding SuperPoint) for variable
number of views on ScanNet.
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Figure 1. Trade-off between matching precision and pose estima-
tion performance for variable confidence thresholds on ScanNet.
Our matching results are both, of high precision and of high value
for pose estimation.
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Figure 2. Early/mid /late layer cross-attention weights as opacity.
Keypoint i in image 2 first interacts with spread points in images
1 and 3, then focuses around the match in middle and late cross-
attention layers.

6. Cross-Attention Visualization
Fig. 2 visualizes cross-attention weights. In early layers

keypoints interact with spread keypoints in the other im-
ages. In later layers, cross-attention more and more focuses
on the region of the matching keypoint.

7. Training with Bundle Adjustment
We found that adding bundle adjustment in the end-to-

end training, compared to training with weighted eight-
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Figure 3. Reprojection error (right) for estimated camera poses on ScanNet 5-tuples (left). With multi-view matching and end-to-end
training, our method successfully handles challenging pose estimation scenarios, while baselines have severe camera pose errors.

point alone, leads to a minor improvement in the pose error
AUC (Tab. 8)—hence, we favored the simpler training pro-
cedure with weighted eight-point alone. At test time, how-
ever, the pose refinement with bundle adjustment is highly
beneficial as shown in the experiment section of the main
paper.

weight. 8-point
training

bundle adjust.
training

Pose error AUC [%] ↑
@5◦ @10◦ @20◦

Ours ✓ ✗ 25.7 47.2 66.4
Ours ✓ ✓ 26.0 47.6 66.7

Table 8. End-to-end training with weighted 8-point and bundle ad-
justment on ScanNet.

8. Number of GNN Messages

Tab. 9 shows that jointly matching N images in a sin-
gle graph reduces the number of GNN messages along self-
edges compared to separately matching the corresponding
P =

∑N−1
n=1 n pairs. E.g., consider matching 5 images

with K keypoints each, either (A) jointly in a single match
graph or (B) matching the 10 possible pairs. In each layer,
(A) computes self-attention for 5 images, hence 5K2 GNN
messages (B) computes self-attention for 10 pairs, i.e., 20
images, hence 20K2 GNN messages. The number of mes-
sages along cross-edges is the same in pairwise and joint
matching.

Number of GNN messages

along self-edges along cross-edges

Pairwise matching 2PK2 N(N − 1)K2

Joint matching NK2 N(N − 1)K2

Table 9. Number of GNN messages per layer for matching N im-
ages, each with K keypoints, as P individual image pairs versus
joint matching in a single graph.

9. Architecture Details

Our multi-view matching network is inspired by the Su-
perGlue [11] architecture.

Keypoint Encoder. The input visual descriptors from
SuperPoint [3] have size D = 256. The graph nodes equally
have an embedding size of D. Hence, the keypoint encoder
Fencode maps a keypoint’s image coordinates and confi-
dence score to D dimensions. It is a MLP, composed of
five layers with 32, 64, 128, 256 and D channels. Each
layer, except the last, uses batch normalization and ReLU
activation.

Graph Attention Network. We found that multi-
view matching benefits from more information flow along
cross-edges compared to self-edges. Hence, the GNN has 7
self-attention layers, each followed by three cross-attention
layers. In the two-view setting and on MegaDepth—due
to limited amount of data—we use a smaller network size
with 9 self- and 9 cross-attention layers in alternating fash-
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Figure 4. Reprojection error (right) for estimated camera poses on MegaDepth 5-tuples (left). Through multi-view matching and end-
to-end training, our method successfully estimates camera poses in challenging outdoor scenarios, while baselines show misalignment.
Reprojection errors are visualized in the MegaDepth scaling.

ion. The attentional aggregation of incoming messages
from other nodes uses multi-head attention with four heads.
The resulting messages have size D, like the node embed-
dings. The MLP Fupdate, which computes the update to the
receiving node, operates on the concatenation of the current
node embedding with the incoming message. It has two
layers with 2D and D channels. Batch normalization and
ReLU activation are employed between the two layers.

Partial Assignment. We use 100 iterations of the
Sinkhorn algorithm to determine the partial assignment ma-
trices.

Confidence MLP. Fconf 3 merges the final node de-
scriptors of matching keypoints—i.e., it operates on the
concatenated match descriptors and applies two linear lay-
ers with 2D and D channels. Fconf 2 lifts the corresponding
partial assignment score to descriptor space through two lin-
ear layers with D channels each. The D-dimensional output
embeddings of Fconf 2 and Fconf 3 are summed and fed into
Fconf 1, which is a final linear layer with sigmoid activation
that reduces to a single channel, the matching confidence.
All layers in Fconf 2 and Fconf 3 use batch normalization
and ReLU activation.

Pose Optimization. The camera poses are optimized
by conducting T = 5 Gauss-Newton updates at training
time and T = 10 at test time. The damping factor β is
initially set to 0.1. It is divided by a factor of 3.5 if the
magnitude of the residual vector decreases, conversely, it is
multiplied by a factor of 1.5 if the magnitude of the residual
vector increases.

10. Training Details
Two-Stage Training. Our end-to-end pipeline is

trained in two stages. The first stage uses the loss term
on the matching result Lmatch. The second stage addition-
ally applies the pose loss Lpose. Stage 1 is trained until
the validation match loss converges, stage 2 until the val-
idation pose loss converges. On ScanNet/ Matterport3D/
MegaDepth the training takes 32/ 343/ 143 epochs for stage
1 and 40/ 365/ 126 epochs for stage 2. We found that
the training on Matterport3D and MegaDepth benefits from
initializing the network weights to the weights after the
first training stage on ScanNet, where most data is avail-
able. During stage 2 we linearly increase the weight of
Lpose from 0 to 242/ 585/ 345 on ScanNet/ Matterport3D/
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Figure 5. Reprojection error (right) for estimated camera poses on Matterport3D 5-tuples (left). Our complete method improves camera
alignment over the ablated versions and SuperGlue, showing the importance of multi-view matching and end-to-end training.

MegaDepth, while linearly decreasing the weight of Lmatch

from 1 to 0.01, over a course of 40000 iterations. The bal-
ancing factor of the rotation term λrot is set to 3.0/ 1.2/ 2.0
on ScanNet/ Matterport3D/ MegaDepth. We use the Adam
optimizer [7] with learning rate 0.0001. The learning rate
is exponentially decayed with a factor of 0.999992 starting
after 100k iterations.

Ground Truth Generation. The ground truth matches
Tab and sets of unmatched keypoints Uab, Vab of an im-
age pair are computed by projecting the detected keypoints
from each image to the other, resulting in a reprojection er-
ror matrix. Keypoint pairs where the reprojection error is
both minimal and smaller than 5 pixels in both directions
are considered matches. Unmatched keypoints must have
a minimum reprojection error greater than 15 pixels on the
indoor datasets and greater than 10 pixels on MegaDepth.

Input Data. We train the multi-view model on 5-tuples,
which are sampled based on overlap ranges. On ScanNet
and Matterport3D, overlap is computed using the ground
truth poses, depth maps and intrinsic parameters. Follow-
ing prior work [11, 12, 10], an overlap range of [0.4, 0.8]
is used on ScanNet. On Matterport3D, where view cap-
ture is much more sparse, we relax the overlap criterion to
[0.25, 0.8]. On MegaDepth, the overlap between images is

the portion of co-visible 3D points of the sparse reconstruc-
tion [11, 4], thus the overlap definition is different from
the indoor datasets and not comparable. Overlap ranges
[0.1, 0.7] and [0.1, 0.4] are used at train and test time, re-
spectively [11]. The network is trained with a batch size
of 24 on indoor data and with a batch size of 4 on outdoor
data. The image size is 480×640 on ScanNet, 512×640
on Matterport3D and 640×640 on MegaDepth. The Su-
perPoint network is configured to detect keypoints with a
non-maximum suppression radius of 4/ 3 on indoor/ outdoor
data. On the indoor datasets we use 400 keypoints per im-
age during training time: first, keypoints above a confidence
threshold of 0.001 are sampled, second, if there are fewer
than 400, the remainder is filled with random image points
and confidence 0 as a data augmentation. On MegaDepth
the same procedure is applied to sample 1024 keypoints us-
ing a confidence threshold of 0.005. At test time on indoor/
outdoor data, we use up to 1024/ 2048 keypoints above the
mentioned confidence thresholds.

Dataset Split. On ScanNet and Matterport3D, we use
the official dataset split. On MegaDepth, we follow the
data split of prior work [12, 14, 10] using scenes 0015 and
0022 for validation, scenes 0008, 0019, 0021, 0024, 0025,
0032, 0063 and 1589 for testing and the remaining scenes



for training. Scenes with low quality depth maps are filtered
out [14, 12, 5, 10]. This way, on ScanNet/ Matterport3D/
MegaDepth we have 240k/ 20k/ 15k 5-tuples for training,
62k/ 2200/ 200 for validation and 1500/ 1500/ 1500 for test-
ing.

11. Baseline Comparison Details

In the baseline comparison, we use the network weights
provided by the authors of SuperGlue [11], LoFTR [12],
COTR [5] and 3DG-STFM [10]. There are SuperGlue,
LoFTR and 3DG-STFM models trained on ScanNet and
on MegaDepth, as well as a COTR model trained on
MegaDepth. We additionally train a SuperGlue model on
Matterport3D and a SuperGlue model on MegaDepth us-
ing the above described dataset split, which is necessary
as the provided model was trained on a train set that con-
tains our test set, as well as the Image Matching Challenge
scenes. For the baselines, SuperGlue, LoFTR, and 3DG-
STFM, we use their default confidence thresholds—0.2 for
all three—and verify that they benefit from this threshold.
We found that our method predicts accurate confidences
that do not require thresholding for weighted pose estima-
tion. When using RANSAC for two-view pose estimation,
we filter matches from our model w/o multi-view using a
threshold of 0.02.

In the multi-view evaluation we found that all meth-
ods benefit from a confidence-weighted bundle adjustment
formulation on the inlier matches using Ceres solver (step
(iv) in Section 4.2). Following [9], we conduct the Image
Matching Challenge (IMC) [6] multi-view evaluation on
the scenes Reichstag, Sacre Coeur and St. Peter’s Square.
The above described MegaDepth dataset split ensures that
these scenes do not overlap with the training set. Since the
IMC protocol does not consider matches in a confidence-
weighted manner, we apply a threshold of 0.06 on matches
from our multi-view model.

Following [11], matches are considered correct if the
symmetric epipolar distance is smaller than 5 · 10−4 or
1 · 10−4 in the indoor and outdoor setting, respectively.

References
[1] Angel X. Chang, Angela Dai, Thomas A. Funkhouser, Ma-

ciej Halber, Matthias Nießner, Manolis Savva, Shuran Song,
Andy Zeng, and Yinda Zhang. Matterport3d: Learning from
rgb-d data in indoor environments. 3DV, 2017. 1

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas A. Funkhouser, and Matthias Nießner. Scan-
net: Richly-annotated 3d reconstructions of indoor scenes.
CVPR, 2017. 1

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages
337–33712, 2018. 3

[4] Mihai Dusmanu, Ignacio Rocco, Tomás Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-net:
A trainable cnn for joint description and detection of local
features. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8084–8093, 2019. 5

[5] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi,
and Kwang Moo Yi. COTR: Correspondence Transformer
for Matching Across Images. In ICCV, 2021. 1, 3, 4, 6

[6] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image
matching across wide baselines: From paper to practice.
International Journal of Computer Vision, 129(2):517–547,
2021. 6

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, 2015. 5

[8] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2041–2050, 2018. 1

[9] Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Larsson,
and Marc Pollefeys. Pixel-Perfect Structure-from-Motion
with Featuremetric Refinement. In ICCV, 2021. 6

[10] Runyu Mao, Chen Bai, Yatong An, Fengqing Zhu, and
Cheng Lu. 3dg-stfm: 3d geometric guided student-teacher
feature matching. ECCV, 2022. 1, 3, 4, 5, 6

[11] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4937–4946, 2020. 1, 2, 3, 4, 5, 6

[12] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8918–
8927, 2021. 1, 2, 3, 4, 5, 6

[13] Bart Thomee, David A. Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. Yfcc100m: The new data in multimedia research.
Commun. ACM, 59(2):64–73, 1 2016. 1

[14] Michal J. Tyszkiewicz, P. Fua, and Eduard Trulls. Disk:
Learning local features with policy gradient. Advances in
Neural Information Processing Systems, 2020. 5, 6


