
SUPPLEMENTARY MATERIAL:
Waffling around for Performance:
Visual Classification with Random
Words and Broad Concepts

In this supplementary material, we first provide a
collection of additional results in §A which extend those
presented in the main paper to more backbone models.
Finally, we showcase the GPT-generated descriptors for
our additionally used benchmarks beyond [36] (§B), and
present some exemplary images from the eleven bench-
marks used in this work in Fig. 7.

A. Additional results
Motivational experiments for random class descriptors.
In Tab. 9, we extend our motivational experiments on ran-
dom class descriptor assignment to motivate WaffleCLIP
from Tab. 1, highlighting similar behaviour on both a larger
ViT-L/14 and a ResNet50 backbone network. Descriptor
randomization does not result in a significant drop in
performance, but rather yields performances that match
DCLIP.

Comparison of WaffleCLIP and DCLIP. Tab. 10 ex-
tends results from Tab. 2 on the ViT-L/14 and ResNet50
backbones, in which WaffleCLIP as a standalone method,
as well as equipped with high-level concepts and/or joint
usage of LLM-generated descriptors, is compared to
DCLIP. The results confirm our conclusions drawn in
§4.2, wherein WaffleCLIP, without access to any external
LLM, can match the performance of LLM-descriptor-based
approaches like DCLIP. In addition to that, we again
find complementarity of randomized descriptors and
LLM-generated descriptors. Furthermore, we observe
performance gains through the usage of automatically
generated high-level concepts.

Progression from systematic to fully randomized de-
scriptor scrambling. Tab. 11 extends the descriptor scram-
bling progression studies from Tab. 4 to two additional
backbones, namely, ViT-L/14 and ResNet50. Similar to
the ViT-B/32 backbone, a move from systematic semantic
shifts to independently subsampled descriptors can recover
and even beat the performance of DCLIP.

B. Exemplary GPT-3 generated descriptors for
additional benchmarks

As we introduce descriptions for three additional
datasets beyond those used in [36], we provide four exam-
ple descriptors for three random classes in each dataset.

Flowers102

Pink Primrose

• "delicate flower"

• "five petals in a star shape"

• "pink in color"

• "often has yellow center"

Balloon Flower

• "a delicate flower with five petals"

• "a unique balloon-like shape"

• "a star-shaped center in the middle of
the flower"

• "vibrant colors such as pink, purple,
blue, white, and yellow"

Sunflower

• "large, bright yellow petals"

• "a dark center surrounded by disk
florets"

• "long stem"

• "a single, long, narrow leaves tapered to
a point"

FGVCAircraft

A300

• "black or silver color"

• "a rectangular body with rounded edges"

• "two lens ports"

• "a mode dial"

EMB-120

• "a cabin with 30-33 seats"

• "a distinctive high-wing design"

• "two Pratt and Whitney PW118 turboprop
engines"

• "a T-tail configuration"

Tornado

• "dark, rotating funnel-shaped cloud"

• "strong winds"

• "dark clouds"

• "heavy precipitation"



ViT-L/14 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
CLIP [47] 67.90 73.37 62.24 56.03 40.46 92.55 93.30 52.87 67.34
DCLIP [36] 69.72 75.26 63.53 58.72 42.60 92.81 93.89 56.60 69.14
DCLIP (same, 1x) 69.27 ±0.23 75.05 ±0.15 64.21 ±0.36 57.59 ±1.72 42.01 ±0.23 93.15 ±0.13 93.97 ±0.22 55.16 ±0.47 68.80 ±0.66

DCLIP (same, 2x) 69.58 ±0.21 75.30 ±0.16 64.30 ±0.26 59.32 ±1.63 42.28 ±0.17 93.31 ±0.05 94.04 ±0.11 55.31 ±0.50 69.18 ±0.62

ResNet50 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
CLIP [47] 51.34 58.16 45.20 28.09 36.63 78.37 83.76 38.51 52.51
DCLIP [36] 52.70 59.66 47.76 34.27 38.39 78.59 85.77 41.01 54.77
DCLIP (same, 1x) 52.63 ±0.28 59.69 ±0.30 47.76 ±0.39 32.74 ±1.49 38.63 ±0.22 80.08 ±0.58 85.36 ±0.52 40.77 ±0.63 54.71 ±0.67

DCLIP (same, 1x) 52.89 ±0.23 59.90 ±0.26 47.70 ±0.29 34.37 ±1.27 38.93 ±0.21 80.11 ±0.30 85.34 ±0.29 40.91 ±0.79 55.02 ±0.58

Table 9: Motivating random class descriptors - additional backbones. Extension of our motivational experiments from
Tab. 1 with ViT-L/14 and ResNet50 backbones.

ViT-L/14 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
CLIP [47] 67.90 73.37 62.24 56.03 40.46 92.55 93.30 52.87 67.34
+ Concepts ↓ ↓ 63.01 61.23 41.07 93.52 93.65 ↓ 68.32
DCLIP [36] 69.72 75.26 63.53 58.72 42.60 92.81 93.89 56.60 69.14
WaffleCLIP (ours) 69.48 ±0.08 75.30 ±0.04 64.18 ±0.13 61.17 ±0.35 42.26 ±0.10 93.31 ±0.09 91.98 ±0.11 53.94 ±0.29 68.95 ±0.18

+ Concepts ↓ ↓ 63.40 ±0.17 60.20 ±0.87 42.57 ±0.09 93.65 ±0.05 94.38 ±0.08 ↓ 69.12 ±0.33

+ GPT descr. 69.80 ±0.13 75.57 ±0.06 64.32 ±0.21 60.63 ±1.23 42.96 ±0.12 93.28 ±0.08 93.35 ±0.22 56.33 ±0.42 69.53 ±0.48

+ GPT descr. + Concepts ↓ ↓ 63.14 ±0.16 61.82 ±1.07 42.95 ±0.09 93.49 ±0.04 94.12 ±0.09 ↓ 69.65 ±0.42

ResNet50 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
CLIP [47] 51.34 58.16 45.20 28.09 36.63 78.37 83.76 38.51 52.51
+ Concepts ↓ ↓ 46.60 34.06 37.43 80.89 83.43 ↓ 53.80
DCLIP [36] 52.70 59.66 47.76 34.27 38.39 78.59 85.77 41.01 54.77
WaffleCLIP (ours) 52.89 ±0.15 60.12 ±0.12 47.68 ±0.15 31.34 ±0.47 38.32 ±0.10 79.68 ±0.17 84.32 ±0.20 39.25 ±0.27 54.20 ±0.23

+ Concepts ↓ ↓ 48.34 ±0.13 35.08 ±0.42 39.03 ±0.08 81.38 ±0.08 85.80 ±0.12 ↓ 55.24 ±0.21

+ GPT descr. + Concepts ↓ ↓ 48.41 ±0.21 37.36 ±0.62 39.43 ±0.07 81.17 ±0.09 85.82 ±0.16 ↓ 55.75 ±0.26

Table 10: Performance of WaffleCLIP with additional backbones. Here, we extend the comparison of WaffleCLIP
(Tab. 2) to GPT-generated fine-grained class descriptors in DCLIP [36] for ViT-L/14 and ResNet50 backbones. We find
similarly consistent insights, where our LLM-free WaffleCLIP can match the performance of DCLIP. Joint usage of both
randomized and LLM-generated descriptors again reveals complementarity (WaffleCLIP + GPT descr). In addition to that,
the usage of automatically extracted high-level semantic concepts can provide consistent additional performance gains (+
Concepts). We use (↓) to denote the same results as previous lines where high-level concept guidance is not applicable.

Stanford Cars

Acura TL Sedan 2012

• "silver, grey, or black exterior"

• "Acura logo on the front grille"

• "distinctive headlights"

• "chrome accents on the exterior"

BMW X6 SUV 2012

• "four-door SUV"

• "sloping roof-line"

• "signature BMW kidney grille"

• "round headlights and taillights"

Honda Odyssey Minivan 2012

• "four doors and a hatchback"

• "a curved hood"

• "wide, round headlights"

• "a Honda logo"



ViT-L/14 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
DCLIP [36] 69.72 75.26 63.53 58.72 42.60 92.81 93.89 56.60 69.14
DCLIP (interchanged) 66.44 ±0.12 72.07 ±0.15 63.62 ±0.44 51.49 ±4.89 37.06 ±0.41 91.30 ±0.30 93.74 ±0.28 49.84 ±0.78 65.69 ±1.77

DCLIP (scrambled) 68.68 ±0.21 74.47 ±0.11 63.78 ±0.13 55.98 ±2.01 41.29 ±0.23 92.29 ±0.20 93.52 ±0.18 53.28 ±1.12 67.91 ±0.83

DCLIP (random, 1x) 68.01 ±0.22 73.89 ±0.08 63.81 ±0.22 55.72 ±2.01 40.32 ±0.29 92.37 ±0.31 93.60 ±0.19 52.83 ±0.46 67.57 ±0.76

DCLIP (random, 5x) 69.27 ±0.17 75.11 ±0.08 64.25 ±0.16 58.34 ±1.55 42.11 ±0.14 93.22 ±0.12 93.88 ±0.09 55.28 ±0.23 68.93 ±0.57

ResNet50 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
DCLIP [36] 52.70 59.66 47.76 34.27 38.39 78.59 85.77 41.01 54.77
DCLIP (interchanged) 49.80 ±0.22 56.35 ±0.06 47.68 ±0.32 28.17 ±4.43 33.77 ±0.34 77.59 ±0.29 84.60 ±0.63 35.81 ±1.12 51.72 ±1.64

DCLIP (scrambled) 52.20 ±0.20 59.21 ±0.06 47.60 ±0.39 34.98 ±2.00 37.90 ±0.18 78.33 ±0.14 85.07 ±0.34 39.19 ±0.95 54.31 ±0.81

DCLIP (random, 1x) 51.60 ±0.29 58.29 ±0.15 47.37 ±0.23 30.18 ±4.18 36.82 ±0.26 78.87 ±0.24 84.52 ±0.17 38.89 ±0.85 53.32 ±1.52

DCLIP (random, 5x) 52.81 ±0.09 59.73 ±0.05 47.74 ±0.10 34.53 ±0.74 38.62 ±0.15 80.20 ±0.13 85.30 ±0.15 40.29 ±0.46 54.90 ±0.32

Table 11: Progression from systematic to fully randomized descriptor scrambling - additional backbones. We extend
our descriptor scrambling progression studies from Tab. 4 to two additional backbones: ViT-L/14 and ResNet50. In both
cases, the same trend can be seen, in which a move from systematic semantic shift to independently subsampled descriptors
can recover the performance of DCLIP after an initial performance drop.
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Figure 7: To get an intuition of the different visual classification tasks, we showcase samples of four randomly selected
classes for each of the eleven utilized visual classification benchmarks.
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