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This supplementary material contains the following.
• Section 1: Classification Accuracies on 5-Datasets over

more baselines.

• Section 2 Classification Accuracies of ConTraCon
with different task orders.

• Section 3 Upper Bounds on classification accuracies on
various datasets.

• Section 4: Augmentations used for task prediction

1. Results on 5-Datasets
First proposed by Ebrahimi et. al. [4], 5-Datasets is com-

posed of CIFAR-10 [7], MNIST [8], SVHN [9], Fashion
MNIST [12] and notMNIST where classification on each of
these datasets is a task. The variation / diversity in the dataset
for each of the tasks in 5-Dataset sets it apart from the other
benchmark datasets used in this paper. As the dataset is very
recently proposed, some of the competitive continual learn-
ing approaches did not have chance to validate on this dataset.
Hence, we ran a few recent approaches on this dataset and
compared with ConTraCon. Specifically, we ran DER++
(NeurIPS2020) [2] and FDR (ICLR2019) [1] on this
very challenging dataset.

Table 1 shows the results on this dataset. The newly added
experimental results are highlighted in blue. While FDR [1]
and DER++ [2] use ResNet18 as the backbone, GPM and
EFT uses a variation of it to reduce the number of learn-
able parameters with an eye to avoid possible overfitting. It
can be noted that ConTraCon significantly beats FDR and
DER++ on this challenging and diverse continual learning
dataset with almost 15% gain over the best of the two in
(Task Incremental Learning) TIL and around 20% better in
the (Class Incremental Learning) CIL setting. Additionally
ConTraCon uses much less parameters (almost 33% less)
compared to both FDR and DER++ showing the capability
of our proposed task adaptable convolution to handle diverse
tasks for continual learning in TIL as well as CIL settings.

†Work started before joining Amazon

2. Results with Different Task Orders

ConTraCon uses convolution-based task adaptation
over the original backbone (in our case CCT [6]), pre-trained
on the first or initial task. To show the robustness of our
approach on the choice of the initial task, we chose to exper-
iment with different initial tasks out of the tasks available
for CIFAR-100/10.

For this purpose, we perform two variations of the experi-
ment originally performed for the main paper (ref. Table 2 of
the main paper) – (1) Train ConTraCon with reversed task
order as followed in main paper so that the initial task there
becomes the final task here and vice-versa, and (2) Train
ConTraCon with a random task-order.

We observe that, with task-order reversed, the model
achieves an average classification accuracy of 84.83% in
the Task Incremental Learning (TIL) setup while the same
accuracy for the original task-order followed in Table 2
of the main paper is 85.69%. With random task-order,
ConTraCon achieves an average classification accuracy
of 83.82%.

Note that, even with different task-orders, ConTraCon’s
performance is always better than that of the state-of-the-art
approaches.

3. Upper Bounds on Classification Accuracies

To better understand the performance of ConTraCon,
we calculate the upper bounds, i.e., the maximum achievable
performance by the backbone architecture. Specifically, we
train each task on a separate backbone architecture, thereby
having a per-task parameter increase of 100%. Using this
setup, we calculate the upper-bounds for all the datasets and
task-splits. Table 2 shows a comparative study of the perfor-
mance variation between the upper-bound and ConTraCon.
On average, we observe that ConTraCon’s performance
is ∼ 1− 4% below the corresponding upper-bounds while
requiring only 0.7% of the number of parameters required
per task for the upper-bound performances.
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Model Approach Backbone # Params 5-Datasets
TIL CIL

FDR (ICLR2019) [1] Rehearsal ResNet18 11.2 M 72.45 38.21
DER++ (NeurIPS2020) [2] Rehearsal ResNet18 11.2 M 80.45 45.03
EFT (CVPR2021) [11] Dynamic Arch ResNet18 4.9 M (32k) 94.75 52.04
GPM (ICLR2021) [10] Regularization ResNet18 1.2 M 90.60 –
Dytox (CVPR2022) [3] Rehearsal Transformer 10.7 M 77.12 67.13
ConTraCon (proposed) Dynamic Arch Transformer 3.9 M (28k) 95.10 65.21

Table 1: Classification accuracy on 5-Datasets. Mentioned in brackets, are the number of additional parameters required to
learn each new task for dynamic architecture-based approaches like EFT and ConTraCon. EFT and GPM use a reduced
version of the resnet18 architecture as their backbone. New baseline approaches are highlighted in blue. The rehearsal based
approaches use a buffer of size 500

Dataset Upper Bound ConTraCon
TIL # Params TIL # Params

CIFAR-100/5 85 3.1 M 79.37 26k
CIFAR-100/10 89.30 3.1 M 85.96 26k
CIFAR-100/20 93.16 3.1 M 88.94 26k
ImageNet-100/10 80.67 3.6 M 76.78 28k
TinyImageNet-200/10 70.66 3.6 M 62.76 28k
5-Datasets 96.42 3.9 M 95.10 28k

Table 2: Comparison of the performance of ConTraCon (proposed model) with the upper-bound (the maximum achievable
performance) calculated by training the backbone separately for each task. The values under TIL denote the average
classification accuracy in the Task Incremental Learning setup. # Params denotes the number of parameters required to learn
each new incoming task.

4. Augmentations Used

Entropy-based task prediction performs poorly
due to cross-entropy training loss function.

Figure 1: Unaugmented
image

This results in high confidence
(i.e., low entropy) predictions
even for out-of-distribution in-
puts [5]. Hence, to overcome
this, we calculate the entropy
of the average predictions of
different augmentations of the
input image (as discussed in
Section 3.4 of the main paper).
Specifically, for an input im-
age

during test time (shown in
Fig. 1), we augment the test image in 10 different ways. Af-
ter that we pass these through various task specific models
and calculate the entropy of each of the predicted probability
distributions to ultimately get the task ids. In this supplemen-
tary material, we provide the details of the augmentations we
used for this purpose. The augmented versions of the image
in Fig. 1 are shown in Fig. 2a–Fig. 2j. The augmentations
we use are as follows:

• Increase Contrast: This augmentation increases the

color content of an image. We increase the contrast
by magnitude 1.6 as shown in Fig. 2a.

• Translate along X-axis: As shown in Fig. 2b, we trans-
late the image along x-axis by a magnitude of 0.4.

• Translate along Y-axis: We translate the image along
y-axis by a magnitude of 0.4 as shown in Fig. 2c.

• Increase sharpness: This augmentation helps in increas-
ing the detail of the image by making the edges clearer.
As shown in Fig. 2d and Fig. 2j, we increase the sharp-
ness of the input image by a magnitude of 1.3.

• Equalize Image: This augmentation equalizes the his-
togram of the given image as shown in Fig. 2e.

• Invert Image color: This augmentation involves revers-
ing the color of the image as shown in Fig. 2f

• Posterize : An image is posterized by reducing the
number of bits for each color channel. As shown in
Fig. 2g we posterize by magnitude 5.

• Increase Brightness: As shown in Fig. 2h and Fig. 2i,
we increase the brightness by magnitudes 1.9 and 1.7
respectively.
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Figure 2: Augmentations used for Task-id prediction (a) increased contrast (b) translation along x axis (c) Translation along
y-axis (d) increased sharpness (e) Equalized image (f) Inverted image (g) posterized image (h) increased brightness (i) increased
brightness (j) increased sharpness.
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