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A. Overview
In this Appendix, we first summarize our main contribu-

tions as follows:

• We propose VIAT, the first framework for enhancing
the viewpoint robustness of visual recognition mod-
els via adversarial training. Unlike previous methods
that rely on data augmentation[2] or incorporate extra
regularizers[5], VIAT enhances viewpoint robustness
by minimizing the model’s loss expectation over the
worst-case adversarial distribution of viewpoints. It
does not require 3D object information and only uses
multi-view images as input, enabling it to be trained
using real-world data.

• We contribute GMVFool, an efficient viewpoint attack
method that optimizes the Gaussian mixture distribu-
tion of adversarial viewpoints through multi-view im-
ages, which can capture a diversity of adversarial view-
points simultaneously.

• we contribute a multi-view dataset—IM3D, which
contains 1k typical synthetic 3D objects from 100 Im-
ageNet classes and have realistic viewpoint images.

• We further construct a new benchmark for viewpoint
robustness—ImageNet-V+, containing 100K images
from the adversarial viewpoints, which is 10× larger
than the previous ImageNet-V[1]. We hope to serve it
as a standard out-of-distribution (OOD) benchmark for
evaluating viewpoint robustness in the future.

Then, we provide the formulas proofs, additional experi-
ments, and datasets introduction to the main paper. Specif-
ically, Sec.B, we give a detailed derivation of Eq. (6), in
Sec.C we present more experimental findings, in Sec.D, we
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introduce the IM3D dataset used by VIAT, and in Sec.E we
introduce our proposed ImageNet-V+ benchmark.

B. Proof of Eq. (6)
In this section, we will detail derive the gradient of the

internal maximization objective in Eq. (5) w.r.t the parame-
ters of the Gaussian mixture distribution.

For the first term of Eq. (5), i.e., the expectation of clas-
sification loss L1 = Ep(u,Γ|Ψ)

[
L(fW(R(a · tanh(u) +

b)), y)
]

, we first calculate its search gradient:

∇ωk log p(u,Γ|Ψ) = γk; (B.1)
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(B.3)

where r follows the standard Gaussian distribution N (0, I).
To approximate a more realistic gradient, we follow the sug-
gestion in the Natural Evolution Strategy (NES)[4] to fur-
ther compute the natural gradient, which is defined as:

∇̃ωk,µk,σk
L1 = F−1∇ωk,µk,σk

L1, (B.4)

where F is the Fisher information matrix as:

F = Ep(u,Γ|Ψ)

[
∇ωk,µk,σk

log p(u,Γ|Ψ)

· ∇ωk,µk,σk
log p(u,Γ|Ψ)⊤

]
,

(B.5)

by further derivation, we can obtain:

Fωk
= ωk; (B.6)

Fµk
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Therefore we can derive that:

∇̃ωk log p(u,Γ|Ψ) = F−1
ωk

γk =
γk
ωk

; (B.9)
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(B.11)

By integrating Eq. (B.9), Eq. (B.10) and Eq. (B.11) into
Eq. (5), we end up with the natural gradient about L1:

∇ωk
L1 = EN (r|0,I)

[
Lcls ·

γk
ωk

]
; (B.12)
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σγk
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(B.15)

For the second term of Eq. (5), i.e., the expectation of en-
tropy regularized loss H = Ep(u,Γ|Ψ)

[
−log p(a·tanh(u)+

b)
]
, we first perform the transformation using the random

variable approach, rewriting H as

H = Ep(u,Γ|Ψ)

[
−log p(a·tanh(

K∏
k=1

µγk

k +

K∏
k=1

σγk

k ·r)+b)
]
.

(B.16)
Next, the log density of the distribution can be analyt-
ically calculated as follows. Note that the dimensions
of the random variables are independent of each other,
we consider here the case of one dimension. For the
random variable r, its probability density is p(r) =
1√
2π

exp(− r2

2 ). The probability density of u is p(u) =∏K
k=1 ω

γk

k ( 1√
2πσk

exp(− r2

2 ))
γk . For the viewpoint v =

a · tanh(u) + b, its inversion is u = tanh−1( v−b
a ) =

1
2 (

a+v−b
a−v+b ), The derivative of u w.r.t. v is du

dv =
1

a(1−tanh(u)2) . By applying the transformation of variable
approach, we can derive the probability density of v as:

p(v) =

K∏
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2
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Therefore, the negative log-likelihood of v is

− log p(v) =

K∑
k=1

γk

[
− ωk +

r2

2
+

log(2π)

2
+ log σk

+ log(1− tanh(µk + σkr)
2) + log a

]
.

(B.18)

Sum over all dimensions into Eq.(B.16), we can simply cal-
culate the gradients of H w.r.t. ωk, µk, and σk as:

∇ωk
H = EN (r|0,I)[−γk]; (B.19)

∇µk
H = EN (r|0,I)

[
− 2γk tanh(µk + σkr)

]
; (B.20)

∇σk
H = EN (r|0,I)

[
γk

1− 2r tanh(µk + σkr)σk

σk

]
.

(B.21)

Finally, we can obtain the gradient in Eq. (6) by combining
Eq.(B.12), Eq.(B.19) ; Eq.(B.13), Eq.(B.20); and Eq.(B.14),
Eq.(B.21).

C. Additional Experimental Result
C.1. Evaluation for More VIAT-Trained Models

We utilize our VIAT to perform viewpoint invariance en-
hancement for more models with different structures and
use the same experimental setup as Sec.4.1. The evaluation
results of each model in ImageNet-V+ are shown in Fig. C.1

C.2. More Prediction examples

Fig.C.2 shows the the prediction of standard-trained and
VIAT-trained ResNet-50 on the ObjectNet dataset. It can be
found that the standard-trained model is prone to prediction
errors for some uncommon viewpoint images, while it can
predict successfully using the VIAT-trained model.

C.3. Visualization of the adversarial viewpoints

We compare the adversarial viewpoint images generated
by the two attack method, ViewFool and our GMVFool,
and Fig. C.3 displays the viewpoint images sampled and
rendered from the optimum adversarial viewpoint distribu-
tion. It can be discovered that GMVFool is able to capture
a wider variety of adversarial viewpoints.

D. The IM3D Dataset
D.1. Synthetic 3D Objects

IM3D consists of 1000 synthetic 3D objects belonging
to 100 classes in ImageNet and are grouped into 7 super-
classes. We use blender to render multi-view images from
the upper hemisphere for each 3D object, as well as to ob-
tain the corresponding camera poses for each image. Ta-
ble.D.1 shows the category information of these objects.
Fig. D.1 shows the visualization results of a part of the ob-
jects in the 3D dataset that we created. As one of the con-
tributions of our work, we will make this 3D dataset and
multi-view image data publicly available in the future.

D.2. Instant-NGP Result

The first step of our method is to train the Instant-NGP[3]
for each object using multi-view images, to obtain the 3D
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Figure C.1. The accuracy of standard-trained and VIAT-trained models under ImageNet-V+ dataset
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Figure C.2. The prediction of ResNet-50 (standard-trained) and ResNet-50 (VIAT-trained) under the ObjectNet dataset.
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Figure C.3. The comparison of adversarial viewpoints generated using GMVFool and ViewFool, and prediction results from ResNet-50.
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Figure D.1. Visualization for a portion of the objects in our dataset.
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Samples from ImageNet-V+Natural Viewpoint

Figure E.1. Sampled images from the ImageNet-V+ dataset.

representations. Therefore, the reconstruction quality of
Instant-NGP is crucial to our method. We use the Peak
Signal to Noise Ratio (PSNR) to measure the reconstruc-
tion quality, a higher PSNR means that the less gap between
the rendering of the object and the ground-truth image. We
provide the average PSNR metrics for each category (each
category contains 10 different objects) in Table. D.1.

E. More about ImageNet-V+

ImageNet-V+ consists of 100,000 images of 1,000 dif-
ferent objects. For each object, we adopt 100 images from
varying viewpoints sampled from the adversarial distribu-
tions. we generate diversity viewpoints by GMVFool, and
Fig. E.1 shows some samples in ImageNet-V+. We can ob-
serve that the sampled images for the same object are very
different from each other, thus the diversity of ImageNet-
V+ is improved.

We will make the ImageNet-V+ dataset publicly avail-
able and hope that it will contribute to future research on
viewpoint robustness for visual recognition.
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Superclass Label Average PSNR Superclass Label Average PSNR

Traffic

airliner 47.59

Indoors

quilt 44.76
garden cart 42.24 control 45.07

wheel 42.29 rocking chair 42.62
catamaran 43.55 shoe 44.12

crane 40.54 lamp 42.63
disk brake 41.06 teapot 44.16

electric locomotive 41.73 toaster 41.64
fire truck 40.90 toilet 46.16
forklift 40.21 cleaner 40.77

garbage truck 41.37 vase 43.78
horse cart 38.68

Outdoors

trash bin 43.11
jeep 40.72 basketball 43.08

ocean liner 41.22 mower 42.10
scooter 38.67 cover 46.74

bike 38.85 tent 43.45
racer 39.82 bench 42.21

school bus 43.81 fence 42.49
car 42.22 swing 38.58

street sign 32.90 umbrella 44.05
traffic light 28.82 gas pump 43.49

Military

aircraft carrier 41.68

Building

barn 43.28
rifle 36.55 beacon 42.00
bow 32.13 castle 41.14

bulletproof vest 41.96 church 42.36
cannon 40.81 obelisk 42.10

military uniform 42.78 palace 36.09
missile 42.02 telescope 37.10
revolver 40.59 solar dish 42.32

tank 39.34 arch 40.26
warplane 41.84 yurt 36.21

Indoors

barbell 40.55

Electronic

cassette 42.39
barrel 42.37 phone 44.58
chest 42.68 keyboard 44.54

coffee mug 45.58 mic 39.12
coffeepot 45.21 mouse 44.41

hat 44.11 computer 44.16
crate 42.47 printer 43.41
pot 43.73 projector 36.90

desk 43.36 camera 41.24
telephone 37.80 screen 45.12

folding chair 45.45

Food

hotdog 46.07
pan 44.66 burger 43.12

piano 44.19 lemon 47.44
dryer 44.26 apple 48.85
iron 43.82 loaf 42.32

mitten 46.94 carbonara 43.84
padlock 42.11 pizza 48.19

sofa 43.89 red wine 39.94
pillow 45.50 pepper 38.75

pool table 43.42 icecream 39.70

Table D.1. The categories of the synthetic 3D dataset we construct and the results of Instant-NGP rendering.
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