
ICICLE: Interpretable Class Incremental Continual Learning – Supplementary
Materials

Dawid Rymarczyk1,2,3,∗ Joost van de Weijer4,5 Bartosz Zieliński1,3,6

Bartłomiej Twardowski4,5,6
1 Faculty of Mathematics and Computer Science, Jagiellonian University

2 Doctoral School of Exact and Life Sciences, Jagiellonian University 3 Ardigen SA
4 Autonomous University of Barcelona 5 Computer Vision Center 6 IDEAS NCBR

∗dawid.rymarczyk@doctoral.uj.edu.pl

Additional experimental setup details
Here we present additional details on the

experimental setup. We performed a hy-
perparameter search for λdist (λdist ∈
{10.0, 5.0, 0.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,
0.0001}). We use Adam optimizer with a learning rate
of 0.001 and parameters β1 = 0.9 and β2 = 0.999. We
set the batch size to 75 and use input images of resolution
224 × 224 × 3. The weights of the network are initialized
with Xavier’s normal initializer.

We perform a warmup training where the weights of f
are frozen for 10 epochs, and then we train the model until it
converges with 12 epochs early stopping. We use the learn-
ing schema presented in Table 1. Depending on the num-
ber of tasks, we perform warm-up training with {5, 5, 4}
epochs and joint training phase for {21, 15, 11}, longer with
fewer tasks. Similarly, we perform prototype projection ev-
ery {10, 7, 5} epoch. So with more tasks, we perform fewer
training epochs (Table 1).

Results on Stanford Cars
Table 2 depicts how the ICICLE method works on the

Stanford Cars dataset compared to other baseline methods.
Results are consistent with the ones on CUB-200-2011 and
show that ICICLE outperforms all standard CL learning
methods adapted to ProtoPNet architecture.

Comparison to GDumb
Additionally, we compared our approach with

GDumb [1], a baseline method in CL learning, in
scenarios involving 3, 5, and 10 images per class with 4
tasks learning achieving 20.3, 34.2, 57.6, and 13.0, 26.7,
48.8 for task-aware and task-agnostic respectively. ICICLE
outperformed GDumb with a small number of examples,
and task-aware for GDumb-10 was the only exception

where GDumb achieved a higher accuracy score.

Distant initialization
In Table 5, we showed that proximity-based initializa-

tion is most beneficial. However, here in Figure 1, we show
how initialization of prototypical parts at a distance from al-
ready existing once generates concepts that are too general
or carry information about background.

Task-recency bias compensation
Here, in Table 3 we show what is the influence of task-

recency bias compensation on each task accuracy for task
agnostic scenario. After compensation, the accuracy on task
1 increased the most, but at the same time accuracy on all
other tasks was sacrificed. However, the average accuracy
after the compensation is increased.

Detailed results after learning each task
In Table 4, and Table 5 we show detailed accuracies of

the ICICLE after learning each task for CUB-200-2011 on a
single run with the same seed in four and ten tasks learning
scenarios.

Analysis of the hyperparameters for baselines
In Table 6, Table 7, and Table 8 we show the influence

of the hyperparameters for each of the baseline methods,
EWC, LWF, and LWM, respectively. Based on that, the
parameters of these methods were chosen for comparison
with ICICLE.



Phase Model layers Learning rate Scheduler Weight decay Duration

Warm-up
add-on 1×1 convolution 1 · 10−3

None None 5, 5, 4 epochs
prototypical layer 1 · 10−3

Joint
convolutions f 1 · 10−4

by half every
5 epochs 10−4

21, 15, 10 epochs
early stoppingadd-on 1×1 convolution 1 · 10−3

prototypical layer 1 · 10−3

Table 1. Learning schema for the ICICLE method.

AVG. INC. TASK-AWARE ACCURACY AVG. INC. TASK-TASK AGNOSTIC ACCURACY

METHOD 4 TASKS 7 TASKS 14 TASKS 4 TASKS 7 TASKS 14 TASKS

FREEZING 0.572 ± 0.031 0.518 ± 0.041 0.486 ± 0.026 0.309 ± 0.012 0.155 ± 0.031 0.092 ± 0.014

FINETUNING 0.216 ± 0.009 0.167 ± 0.011 0.149 ± 0.012 0.182 ± 0.006 0.124 ± 0.013 0.057 ± 0.001

EWC 0.456 ± 0.021 0.315 ± 0.037 0.287 ± 0.041 0.258 ± 0.019 0.152 ± 0.022 0.011 ± 0.009

LWM 0.459 ± 0.072 0.416 ± 0.048 0.305 ± 0.022 0.233 ± 0.026 0.171 ± 0.016 0.080 ± 0.008

LWF 0.375 ± 0.021 0.356 ± 0.024 0.250 ± 0.020 0.230 ± 0.011 0.171 ± 0.005 0.092 ± 0.008

ICICLE 0.654 ± 0.014 0.645 ± 0.003 0.583 ± 0.048 0.335 ± 0.005 0.203 ± 0.010 0.116 ± 0.018

Table 2. Average incremental accuracy comparison for different numbers of tasks on Stanford Cars, demonstrating the negative impact of
the high number of tasks to be learned on models’ performance. Despite this trend, ICICLE outperforms the baseline methods across all
task numbers.

Figure 1. Image depicts the 2D TSNE projection of prototypes.
One can observe that there is a cluster of prototypes from all tasks
except the first one (yellow box). This is observable with distant
initialization and prototype visualizations show that those proto-
typical parts are representing the background or vague concepts.

TASK 1 TASK 2 TASK 3 TASK 4 AVG

TASK AWARE 0.514 0.717 0.725 0.698 0.663

BEFORE 0.028 0.301 0.434 0.575 0.335

AFTER 0.233 0.365 0.314 0.486 0.350
Table 3. Task-recency bias compensation influence of a single run.
Results show that our compensation method balance more the re-
sults per each task in task agnostic scenario.



TASK-AWARE ACCURACY TASK-TASK AGNOSTIC ACCURACY

After TASK 1 TASK 2 TASK 3 TASK 4 AVG TASK 1 TASK 2 TASK 3 TASK 4 AVG

TASK 1 0.806 NA NA NA 0.806 0.806 NA NA NA 0.806

TASK 2 0.740 0.759 NA NA 0.750 0.089 0.747 NA NA 0.418

TASK 3 0.622 0.736 0.759 NA 0.706 0.033 0.633 0.549 NA 0.404

TASK 4 0.514 0.717 0.725 0.698 0.663 0.028 0.484 0.378 0.505 0.349

Table 4. Results of the ICICLE method before task-recency compensation for four task learning scenario after each learning episode.

TASK-AWARE ACCURACY

After TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10 AVG
TASK 1 0.920 NA NA NA NA NA NA NA NA NA 0.920

TASK 2 0.666 0.869 NA NA NA NA NA NA NA NA 0.767

TASK 3 0.462 0.818 0.858 NA NA NA NA NA NA NA 0.713

TASK 4 0.420 0.751 0.774 0.774 NA NA NA NA NA NA 0.680

TASK 5 0.314 0.625 0.680 0.672 0.784 NA NA NA NA NA 0.615

TASK 6 0.268 0.538 0.627 0.617 0.760 0.747 NA NA NA NA 0.593

TASK 7 0.265 0.476 0.584 0.617 0.713 0.706 0.769 NA NA NA 0.590

TASK 8 0.258 0.413 0.551 0.555 0.667 0.634 0.741 0.764 NA NA 0.573

TASK 9 0.253 0.398 0.494 0.492 0.598 0.587 0.701 0.745 0.852 NA 0.569

TASK 10 0.244 0.371 0.462 0.441 0.573 0.560 0.667 0.729 0.816 0.803 0.567

TASK-AGNOSTIC ACCURACY

TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10 AVG
TASK 1 0.920 NA NA NA NA NA NA NA NA NA 0.920

TASK 2 0.010 0.869 NA NA NA NA NA NA NA NA 0.439

TASK 3 0.0 0.060 0.854 NA NA NA NA NA NA NA 0.305

TASK 4 0.0 0.0 0.339 0.751 NA NA NA NA NA NA 0.273

TASK 5 0.0 0.0 0.030 0.323 0.746 NA NA NA NA NA 0.220

TASK 6 0.0 0.0 0.004 0.090 0.451 0.684 NA NA NA NA 0.205

TASK 7 0.0 0.0 0.0 0.020 0.193 0.432 0.712 NA NA NA 0.194

TASK 8 0.0 0.0 0.0 0.020 0.073 0.233 0.497 0.643 NA NA 0.181

TASK 9 0.0 0.0 0.0 0.0 0.035 0.138 0.338 0.435 0.676 NA 0.180

TASK 10 0.0 0.0 0.0 0.0 0.016 0.070 0.214 0.285 0.484 0.643 0.171

Table 5. Results of the ICICLE method before task-recency compensation for ten task learning scenario after each learning episode.

TASK-AWARE ACCURACY TASK-TASK AGNOSTIC ACCURACY

α 0.01 0.1 1.0 5.0 10.0 0.01 0.1 1.0 5.0 10.0
0.185 0.329 0.441 0.197 0.167 0.170 0.185 0.213 0.168 0.144

Table 6. Influence of the alpha parameter in EWC on the accuracy of ProtoPNet architecture in four task learning scenario.

TASK-AWARE ACCURACY TASK-TASK AGNOSTIC ACCURACY

γ 0.001 0.01 0.1 1.0 10.0 0.001 0.01 0.1 1.0 10.0
0.240 0.240 0.431 0.355 0.231 0.209 0.209 0.212 0.209 0.209

Table 7. Influence of the γ parameter in LWM on the accuracy of ProtoPNet architecture in four task learning scenario.

TASK-AWARE ACCURACY TASK-TASK AGNOSTIC ACCURACY

λ 0.001 0.01 0.1 1.0 10.0 0.001 0.01 0.1 1.0 10.0
0.232 0.232 0.238 0.359 0.249 0.207 0.210 0.210 0.231 0.221

Table 8. Influence of the λ parameter in LWF on the accuracy of ProtoPNet architecture in four task learning scenario.



References
[1] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.

Gdumb: A simple approach that questions our progress in
continual learning. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pages 524–540. Springer, 2020. 1


