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Network CUB-200 Food Cars Aircraft Flowers

R50 79.2±1.7 86.9±0.2 90.4±1.0 86.2±2.0 99.0±0.4

GA-R50 81.9±0.6 87.7±0.4 91.3±1.1 86.6±1.4 99.2±0.2
GA-R50 (w/o heads) 81.4±1.0 87.1±0.1 90.7±1.0 86.8±1.4 99.3±0.2

Table A: Transfer learning results on FGVC datasets. We com-
pare the accuracy of the baseline ResNet50 and GA-ResNet50 with
or without heads. We report the averaged accuracies with the
standard deviation to show the accuracy robustness across diverse
hyper-parameter settings for each dataset. All the accuracies are
reported by training and evaluation with 224×224 images. We
observe that our approach demonstrates enhanced transferability.
Surprisingly, even our model without heads (i.e., the backbone
itself) exhibits improved transferability as well.

A. Experiment (cont’d)
A.1. Fine-grained Visual Classification

Training setup. To further investigate our pretrained mod-
els’ transferability, we finetune the ImageNet-pretrained GA-
ResNet50 on the fine-grained visual classification (FGVC)
datasets. We employ five datasets, including CUB-200 [13],
Food-101 [1], Stanford Cars [7], FGVC Aircraft [10],
and Oxford Flowers-102 [11]. We grid-search the hyper-
parameters similarly to [6, 5] and follow the provided train-
ing regime for finetuning. We use the SGD optimizer with
20k iterations train networks and 224×224 center-cropped
images from the downsized one to 256 on its shorter side.
We also finetune the ImageNet-pretrained ResNet50 on each
dataset as baselines using identical grid-searches to exhibit
maximal performance. Note that we report the accuracy at
the final epochs rather than picking up the peak accuracy.
We do not compare with the finetuning performance of other
backbones due to the inherent differences in model size and
finetuning training setup. As shown in Table A, each of GA-
ResNet50s consistently outperforms their respective baseline
counterparts.

Finetuining models without heads. We conjecture that
our models would have empowered backbones (i.e., the mod-
els without head classifiers) having improved transferability.
To validate this, we report the transfer learning performance
of the finetuned backbone, which is identical to ResNet50
without the heads. Table A shows that GA-ResNet50 (with-

Dataset Accuracy gains (%p)

CIFAR (depth=29/65/110) +0.49 / +0.85 / +0.24
ImageNet / CUB / Food +0.28 / +2.2 / +0.2
Car / Aircraft / Flower +0.3 / +0.6 / +0.3

Table B: Impact of our models without heads. We study the back-
bone performance after eliminating heads. The numbers indicate
top-1 accuracy gains over each baseline, which is trained with the
identical setting to ours. This reveals our proposed method con-
sistently improves the backbone’s expressiveness across different
datasets, detaching heads after training.

out head classifiers) enjoys consistent extra accuracy gains in
Table A. We presume that our proposed method encourages
the early layers (i.e., input-side layers) to learn more transfer-
able representations due to the proposed lightweight heads
that possess a few trainable parameters. We believe this
shows a potential of utilizing our GA-networks as a partial
network without using heads at inference for further effi-
ciency. We will give more results about employing partial
networks in the later section.

B. Additional Experimental Studies

We conduct additional empirical studies with our pro-
posed method. First, we showcase the capability of back-
bones that have no heads and models with only a single head
by randomly removing all other heads. Second, we present
comparative experiments with an existing multi-head neural
network [8].

B.1. Deploying Partial Networks

Our proposed method enables the deployment of partial
networks from the overall learned network, enhancing effi-
ciency (i.e., using the backbone alone or the network with
fewer heads). In conjunction with Table A, the CIFAR and
ImageNet results in Table B offer additional evidence that
our backbones experience substantial improvement without
heads, all without incurring extra computational demands.
As aforementioned, using lightweight heads contribute to
this improvement. We further speculate that this outcome
arises due to the augmented gradients originating from mul-
tiple heads, which are learned through the proposed method.
Furthermore, we argue that our decorrelation loss augments



Network Depth
FLOPs

(G)
#Params

(M)
Top-1
err (%)

Top-5
err (%)

R50
29 0.05 0.34 26.1 6.5
65 0.10 0.71 22.0 4.9
110 0.17 1.17 19.8 4.4

GA-R50
29 0.05 0.36 24.8 6.3
65 0.11 0.76 21.2 4.8
110 0.18 1.26 19.6 4.4

Table C: Impact of our models using only a single head. We
report a performance comparison of our models with a single head
classifier with the ResNet baselines. The results show that only
a single head classifier with negligible extra computational costs
gives consistent and significant performance improvements.

the gradients again, promoting less-correlatedheads.
We adjust our models using only a single head classifier

upon the baseline. We remove all the other heads but remain-
ing a single head that is randomly chosen. The single head
at the top of a backboneincurs minimal computational costs
compared to the backbone itself yet achieves significant per-
formance improvement, as shown in Table C. In practice,
the number of head classifiers can be adjusted to balance the
accuracy, memory, and latency under resource limits.

B.2. Comparison with Multiple Feature Learning

Finally, we conduct additional experiments comparing
with a prior multiple-feature learning method, which learns
multiple features and aggregates. This is to show whether
our method with lightweight heads actually works better
than the method with heavy and complicated heads. Since
such architectures [9, 3] were aimed at different tasks, we
choose a milestone work [8] that also trains multiple high-
level features from multiple branches for comparison.

The branches in ONE-E [8] appear similar to our head
classifiers; however, ONE-E uses a copy of fractions in its
backbone, resulting in overall heavy computational costs.
Moreover, those branches are positioned differently com-
pared with ours. ONE-E training highly relies on knowledge
distillation to learn similar features among the branches,
where the concept is completely distinct from ours. We ar-
gue that the reported improvements in the paper may stem
from the heavy branches; they could learn expressive repre-
sentations but are highly correlated to each other.

To ensure a fair comparison, we employ the identical
architecture proposed in the paper [8] for training, which is
found in the publicly released codebase1, where there are
three branches from the middle layer of ResNets. ResNet32
(R32) and ResNet110 (R110) are used for experiments, the
standard network architectures for CIFAR training [4, 14].
We train the models for ONE-E and ours with identical

1https://github.com/lan1991xu/one_neurips2018

Method
FLOPs

(G)
#Params

(M)
Top-1
err (%)

Top-5
err (%)

ONE-E + R32 0.12 1.19 24.0 5.6
GA -R32 0.08 0.75 21.9 5.1

ONE-E + R110 0.29 2.96 19.9 4.3
GA -R110 0.22 2.04 19.0 3.9

Table D: Comparison with the multiple feature learning method.
We perform an experimental comparison of our method with ONE-
E [8]. Two baselines ResNet32 (R32) and ResNet110 (R110) are
used, and ours consistently outperform the counterparts.

Network #Params (M)
Memory

128 256 512

ViT-S 25.6 157.6 231.1 378.1
GA-ViT-S 41.3 179.2 252.7 399.7

Table E: Memory usage by batch size (i.e. 128, 256, and 512).
We measure the memory usage of the input image tensor and pa-
rameters for ViT [2, 12] models.

training setups. Table D shows that our models with the
same number of head classifiers achieve better performance
with extremely less computational demands.

B.3. Memory usage

We measure the additional memory usage by our pro-
posed method. As shown in Table E, the parameter overhead
of our method is not severe, so the additional memory usage
of them is manageable. Since this memory usage is mostly
proportional to the parameters, other models with GA will
show similar trends.
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