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ssafadoust20@ku.edu.tr fguney@ku.edu.tr

In this supplementary document, we first provide the
derivations of the basis for the space of possible optical
flows in Section A. Then in Section B, we provide the
details of the projection of the input flow into the space
spanned by the bases. In Section C, we show additional
qualitative results and in Section D, we provide an evalu-
ation of our depth estimations for the foreground objects
on MOVi datasets. Finally, in Section E, we show depth
evaluation results for our model assuming known camera
intrinsics.

A. Derivation of Basis
Assume that the world coordinate system coincides with

the camera coordinate system and let X = (x,y, z) denote
the coordinates of a 3D point in the world. Assume that the
scene is static and the camera is moving rigidly with angular
velocity ω ∈ R3 and linear velocity v ∈ R3, corresponding
to the rotational and translational part of the motion. Then,
following [4, 7], X′, the instantaneous velocity of the point
X, can be calculated as follows:

X′ =

x′

y′

z′

 = −(ω ×X+ v) =

ω3y − ω2z− v1
ω1z− ω3x− v2
ω2x− ω1y − v3

 (1)

Let fx, fy be the focal lengths and (cx, cy) denote the
principal point of the camera. The pixel p = [u, v]T corre-
sponding to the 3D point X can be calculated as:

p =

[
u
v

]
=

[
xfx/z+ cx
yfy/z+ cy

]
(2)

Therefore, we can write:

x

z
=

(u− cx)

fx
= f−1

x ū

y

z
=

(v − cy)

fy
= f−1

y v̄ (3)

where we have defined ū = u − cx and v̄ = v − cy . The
instantaneous flow of a pixel p can be computed by taking

derivatives of Eq. (2) with respect to time as follows:

p′ =

[
u′

v′

]
=

1

z2

[
fx(zx

′ − xz′)
fy(zy

′ − yz′)

]
(4)

By substituting the values from Eq. (1) into Eq. (4) we can
write:[
u′

v′

]
=

1

z2

[
fx (z (ω3y − ω2z− v1)− x (ω2x− ω1y − v3))
fy (z (ω1z− ω3x− v2)− y (ω2x− ω1y − v3))

]
=

1

z2

[
fx(−zv1 + xv3 + xyω1 − (x2 + z2)ω2 + yzω3)
fy(−zv2 + yv3 + (y2 + z2)ω1 − xyω2 − xzω3)

]
(5)

By plugging the values from Eq. (3), and using disparity
d = 1/z, we can re-write Eq. (5) as:

[
u′

v′

]
=



−fx d 0
0 −fy d
ū d v̄ d

fy
−1 ū v̄ fy + fy

−1 v̄2

−(fx + fx
−1 ū2) −fx

−1 ū v̄

fx fy
−1 v̄ −fy fx

−1 ū



T 
v1
v2
v3
ω1

ω2

ω3

 (6)

Therefore, we can define a basis for the space of possible
instantaneous optical flows for a given frame as

B0 = {bTx,bTy,bTz,bRx,bRy,bRz} (7)

where we define:

bTx =

[
fx d
0

]
, bRx =

[
fy

−1 ū v̄

fy + fy
−1 v̄2

]

bTy =

[
0

fy d

]
, bRy =

[
fx + fx

−1 ū2

fx
−1 ū v̄

]

bTz =

[
−ū d
−v̄ d

]
, bRz =

[
fx fy

−1 v̄

−fy fx
−1 ū

]
(8)

Our goal is to have basis vectors that do not depend on
the values of focal lengths. Since basis vectors can be scaled



arbitrarily, we can scale bTx and bTy by 1/fx and 1/fy ,
respectively, to make them independent of fx and fy . By
assuming fx = fy , bRz becomes [v̄,−ū]T which is also
free of focal lengths. We can write bRx and bRy as:

bRx = fy

[
0
1

]
+ fy

−1

[
ū v̄
v̄2

]
bRy = fx

[
1
0

]
+ fx

−1

[
ū2

ū v̄

]
(9)

Therefore, if we define:

bR1x =

[
0
1

]
bR2x =

[
ū v̄
v̄2

]
bR1y =

[
1
0

]
bR2y =

[
ū2

ū v̄

]
(10)

we can replace bRx with the pair bR1x and bR2x. Sim-
ilarly, we replace bRy with the pair bR1y and bR2y [1].
Therefore, we can use the set of eight basis vectors

B0 = {bTx,bTy,bTz,bR1x,bR2x,bR1y,bR2y,bRz}
(11)

as a basis for the space of possible flows. Note that the space
covered by this basis is actually slightly bigger because we
cannot enforce the fx = fy constraint in the decomposition
of the rotational flows [1].

We normalize bTx,bTy, and bTz so that each vec-
tor has norm 2 before multiplication by d, and normalize
bR1x,bR2x,bR1y,bR2y, and bR1z to have norm 1.

B. Projection of Flow
We project input flow F into span({B1∪B2∪ . . .∪BK})

where each Bi is a set of 8 vectors defined as:

Bi = {mib | b ∈ B0}. (12)

Consider an aribtrary ordering on the elements of Bi and
define vi

j as the j’th element in Bi, reshaped into a 2HW
vector. We define the matrix Si ∈ R2HW×8 as:

Si =
[
v1
i | v2

i | . . . | v8
i

]
(13)

Then, we define S ∈ R2HW×8K as follows:

S =
[
S1 | S2 | . . . | SK

]
(14)

We calculate the singular value decomposition of S:

S = UΣVT (15)

The columns of U corresponding to non-zero singular val-
ues of S span the column space of S, i.e. span({B1 ∪ B2 ∪
. . . ∪ BK}). Since the columns of U form an orthonormal
set, we can project F into the column space of S as follows:

F̂ = U′U′TF (16)

where U′ is the matrix whose columns are the columns of U
corresponding to non-zero singular values of S. In practice,
we select columns of U that correspond to singular values
larger than 10−5.

C. Additional Qualitative Results
Qualitative results for CLEVR and CLEVRTEX datasets

are provided in Fig. 1. We show additional visualizations,
including the post-processing results for MOVi datasets in
Fig. 2. We can see that PPMP [5] suffers from over-
segmentation, with or without post-processing, especially
in the MOVi datasets, whereas our method achieves much
better results, as reflected in the quantitative performance.
Our results for the KITTI dataset are visualized in Fig. 3. It
can be seen that we can segment objects such as cars and
pedestrians successfully. We also visualize the depth esti-
mations of our model.

D. Depth Evaluation on MOVi
In this section, we evaluate the performance of our depth

model on the foreground objects in each of the MOVi
datasets. We evaluate the performance for both the Full
model and the translation-only (Only-T) model. Note that
as explained in the main paper, with the rotation-only
model, the depth network is not trained. The results are
presented in Table 1. We only evaluate the foreground ob-
jects. We use the median scaling approach [12] to convert
the predicted depths into the metric scale and cap the depths
to 10 meters in all datasets.

The depth network of the Only-T models achieves better
results on the MOVi{C, D, E} datasets. This is expected
because the depth and segmentation networks are trained
jointly. As a result, in the Full model, the errors in the es-
timation of rotation affect the depth estimations negatively,
whereas, in the Only-T model, the depth estimations are not
affected by erroneous rotation estimations. However, In the
simpler MOVi-A dataset, as explained in the main paper, we
found that the depth network in the Only-T model cannot
predict the depth correctly. Therefore, we did not include
the results of this version of the model for MOVi-A.

E. KITTI with Intrinsics
In our formulation, we produce basis vectors that do not

depend on the values of focal lengths fx and fy , which re-
sults in a set of 8 basis vectors as in Eq. (11), instead of
6 as in Eq. (7), for each of K regions. This means that
our method can work without knowing the values of fx and
fy . On the other hand, monocular depth estimation meth-
ods assume a known intrinsics matrix, i.e. fx, fy, cx, and cy
are provided in the dataset. In order to make a fair com-
parison with monocular depth estimation methods, we train
a version of our model on KITTI, where we also assume a
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Figure 1: Visualization of Depth and Segmentation Results on CLEVR and CLEVRTEX datasets. The first four columns
are from CLEVR, and the last four columns are from CLEVRTEX. † indicates post-processing.

Dataset Abs Rel ↓ Sq Rel ↓ RSME ↓ RMSE log ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
MOVi-A (Full) 0.113 0.348 1.483 0.226 0.061 0.813 0.912 0.949
MOVi-A (Only-T) - - - - - - - -

MOVi-C (Full) 0.225 0.604 1.845 0.299 0.100 0.609 0.856 0.946
MOVi-C (Only-T) 0.166 0.446 1.437 0.217 0.068 0.779 0.932 0.978

MOVi-D (Full) 0.544 2.863 3.744 1.381 0.415 0.348 0.547 0.657
MOVi-D (Only-T) 0.357 1.598 2.603 0.730 0.225 0.540 0.757 0.847

MOVi-E (Full) 0.274 1.198 2.965 0.582 0.162 0.565 0.747 0.829
MOVi-E (Only-T) 0.244 0.989 2.596 0.559 0.159 0.596 0.761 0.842

Table 1: Depth Evaluation on Foreground Objects on MOVi Datasets. Only-T refers to the version of our model where
we only use the basis vectors corresponding to translation.

known intrinsics matrix and create 6 basis vectors according
to Eq. (7) for each region using the values of known focal

lengths. We report the depth estimation results with im-
proved ground truth on the Eigen split of the KITTI dataset
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MOVi-A MOVi-C MOVi-D MOVi-E

Figure 2: Visualization of Depth and Segmentation Results on MOVi datasets. † indicates post-processing.

in Table 2. We can see that when we use a known cam-
era intrinsic matrix (Ours-intrinsics), the performance is im-
proved compared to our original model (Ours), and we can
achieve better results that are comparable to the state-of-
the-art in all metrics.
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Figure 3: Visualization of Segmentation and Depth Results on KITTI.

Abs Rel ↓ Sq Rel ↓ RSME ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Zhou et al. [12] 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Mahjourian et al. [8] 0.134 0.983 5.501 0.203 0.827 0.944 0.981
GeoNet [11] 0.132 0.994 5.240 0.193 0.833 0.953 0.985
DDVO [10] 0.126 0.866 4.932 0.185 0.851 0.958 0.986
Ranjan et al. [9] 0.123 0.881 4.834 0.181 0.860 0.959 0.985
EPC++ [6] 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Ours 0.107 1.539 4.027 0.149 0.911 0.971 0.989
Monodepth2 [2] 0.090 0.545 3.942 0.137 0.914 0.983 0.998
Ours-intrinsics 0.084 0.509 3.450 0.132 0.931 0.980 0.993
PackNet-SfM [3] 0.078 0.420 3.485 0.121 0.934 0.986 0.996

Table 2: Evaluation of Depth Estimation on KITTI. We use the Eigen split of KITTI using improved ground truth. Note
that all methods, except Ours, use the camera intrinsics matrix. Ours-intrinsics uses the intrinsics matrix and achieves
comparable performance to state-of-the-art methods.
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