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1. Overview

This supplementary material provides a more detailed
analysis of the experiments presented in the paper. In partic-
ular, Sec. 2 provides further implementation details, Sec. 3
presents a detailed class-wise performance comparison on
additional UDA benchmarks, Sec. 4 highlights the benefits
of self-training over adversarial training for UDA panop-
tic segmentation, Sec. 5 presents an ablation study showing
the significance of different instance losses on the adapta-
tion process, Sec. 6 analyzes additional qualitative example
predictions, and Sec. 7 offers a visual comparison of the
predictions made by EDAPS and M-Dec-BU.

2. Further Implementation Details

EDAPS is implemented in PyTorch [8] based on the
DAFormer framework [6]. The source code is available
at https://github.com/susaha/edaps to ensure
easy reproducibility and promote research in domain-
adaptive panoptic segmentation. We follow CVRN [7] and
consider 11 stuff-classes and 8 thing-classes. The stuff
classes are road, sidewalk, building, wall, fence, pole, traf-
fic light, traffic sign, vegetation, terrain, and sky; the thing
classes are person, rider, car, truck, bus, train, motorcycle,
and bicycle.

We use a threshold of 0.95 to select the top-k binary
masks predicted by the EDAPS instance head. We use
these top-k predicted masks to generate the class-agnostic
instance segmentation maps, which are then fused with the
predicted semantic segmentation maps by a majority-voting
rule.

For the Foggy Cityscapes dataset [9], we use the attenu-
ation coefficient β = 0.02. It specifies the meteorological
optical range (MOR) or the visibility, and it is measured in
inverse meters. β = 0.02 corresponds to a MOR of 150m
and represents a considerable domain gap to clear weather
scenes (see Fig. 8).

M-Dec-BU (Baseline). Since the bottom-up instance de-
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coder (used in the M-Dec-BU) does not directly predict in-
stance masks, a post-processing step is required to generate
the class-agnostic instance segmentation maps from the pre-
dicted center and offset heatmaps. The post-processing step
includes selecting the top-k instance centers and grouping
pixels based on these selected centers. We pick the top-k
predicted centers by first applying a hard thresholding to fil-
ter out the low-confident center predictions following a 2D
max pooling on the predicted center heatmap. In all our ex-
periments, we set the threshold to 0.1, max-pooling kernel
size to 7× 7, and k = 200 as in [3].

Once the top-k instance centers are selected, we as-
sign each pixel an instance id based on the predicted offset
heatmap. More specifically, the instance id for a pixel is the
index of the closest instance center after moving the pixel
location by the offset. We filter out the stuff pixels based on
the predicted semantic segmentation. Once the instance ids
are computed, we generate the class-agnostic instance seg-
mentation maps and fuse them with the predicted semantic
segmentation maps by a majority-voting rule [3].

3. Comparison on Additional Benchmarks
In this section, we report UDA performance on ad-

ditional clear-to-foggy and real-to-real UDA benchmarks.
Tab. 1 and Tab. 2 present comparisons with state-of-the-art
methods on Cityscapes → Foggy Cityscapes and Cityscapes
→ Mapillary Vistas benchmarks. We report a detailed class-
wise PQ comparison to gain a better insight into the per-
formance analysis. EDAPS shows significant performance
gains for most of the thing and stuff classes. Most im-
portantly, EDAPS significantly improves the mean recog-
nition quality (mRQ) on both clear-to-foggy and real-to-
real benchmarks with a respective percentage gain of 42%
(Tab. 1) and 25% (Tab. 2).

4. Adversarial- vs. Self-Training
We chose self-training over adversarial training because

it is the predominant SOTA approach in UDA semantic seg-
mentation. Further, adversarial training is rather unstable,

https://github.com/susaha/edaps


Table 1: Comparison with state-of-the-art methods on Cityscapes → Foggy Cityscapes benchmark for UDA Panoptic Seg-
mentation. For clarity, per class PQs are reported. The results of EDAPS are averaged over 3 random seeds.
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UniDAPS-Baseline [1] 92.5 48.9 60.6 6.0 10.7 5.3 9.9 23.6 49.7 55.6 22.3 15.4 38.5 23.7 1.6 2.8 70.0 38.6 29.2
DAF [2] 94.0 54.5 57.7 6.7 10.0 7.0 6.6 25.5 44.6 59.1 26.7 16.7 42.2 36.6 4.5 16.9 70.6 41.7 31.8
FDA [13] 93.8 53.1 62.2 8.2 13.4 7.3 7.6 28.9 50.8 49.7 25.0 22.6 42.9 36.3 10.3 15.2 71.4 43.5 33.0
AdvEnt [11] 93.8 52.7 56.3 5.7 13.5 10.0 10.9 27.7 40.7 57.9 27.8 29.4 44.7 28.6 11.6 20.8 72.3 43.7 33.3
CRST [15] 91.8 49.7 66.1 6.4 14.5 5.2 8.6 21.5 56.3 50.7 30.5 30.7 46.3 34.2 11.7 22.1 72.2 44.9 34.1
SVMin [4] 93.4 53.4 62.2 12.3 15.5 7.0 8.5 18.0 54.3 57.1 31.2 29.6 45.2 35.6 11.5 22.7 72.4 45.5 34.8

CVRN [7] 93.6 52.3 65.3 7.5 15.9 5.2 7.4 22.3 57.8 48.7 32.9 30.9 49.6 38.9 18.0 25.2 72.7 46.7 35.7
UniDAPS [14] 93.9 53.1 63.9 8.7 14.0 3.8 10.0 26.0 53.5 49.6 38.0 35.4 57.5 44.2 28.9 29.8 72.9 49.5 37.6

EDAPS w/ MiT-B2 (Ours) 90.3 64.8 80.0 20.7 32.0 47.9 45.4 63.3 85.1 71.8 46.8 48.0 64.0 52.6 34.1 36.2 78.9 68.7 55.1
EDAPS w/ MiT-B5 (Ours) 91.0 68.5 80.9 24.1 29.0 50.1 47.2 67.0 85.3 71.8 50.9 51.2 64.7 47.7 36.9 41.5 79.2 70.5 56.7

Table 2: Comparison with state-of-the-art methods on Cityscapes → Mapillary Vistas benchmark for UDA Panoptic Seg-
mentation. For clarity, per class PQs are reported. The results of EDAPS are averaged over 3 random seeds.
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CRST [15] 77.0 22.6 40.2 7.8 10.5 5.5 11.3 21.8 56.5 77.6 29.4 18.4 56.0 27.7 11.9 18.4 72.4 39.9 30.8
FDA [13] 74.3 23.4 42.3 9.6 11.2 6.4 15.4 23.5 60.4 78.5 33.9 19.9 52.9 8.4 17.5 16.0 72.3 40.3 30.9
AdvEnt [11] 76.2 20.5 42.6 6.8 9.4 4.6 12.7 24.1 59.9 83.1 34.1 22.9 54.1 16.0 13.5 18.6 72.7 40.3 31.2
CVRN [7] 77.3 21.0 47.8 10.5 13.4 7.5 14.1 25.1 62.1 86.4 37.7 20.4 55.0 21.7 14.3 21.4 73.8 42.8 33.5

EDAPS w/ MiT-B5 (Ours) 58.8 43.4 57.1 25.6 29.1 34.3 35.5 41.2 77.8 59.1 35.0 23.8 56.7 36.0 24.3 25.5 75.9 53.4 41.2

Table 3: Performance comparison between adversarial and
self training based models (SYNTHIA → Cityscapes).

UDA Method mAP mIoU mSQ mRQ mPQ

EDAPS Adversarial Train 23.6 39.4 63.8 35.0 26.2
EDAPS Self Train (Ours) 34.4 57.5 72.7 53.6 41.2

which makes our architecture study more difficult. To pro-
vide a more comprehensive picture, we additionally train
EDAPS with adversarial training [10] in Tab. 3. Consistent
with UDA semantic segmentation, self-training achieves
better results for UDA panoptic segmentation.

5. Ablation Study of Instance Losses

EDAPS uses a top-down instance decoder, which is
trained using 5 losses. Even though the effect of these losses
is well explored for supervised panoptic segmentation, the
influence of the different losses on UDA panoptic segmen-
tation has not been studied so far. Therefore, we present a
detailed ablation study analyzing the effect of each instance
loss on the domain-adaptive panoptic performance (mPQ).
Furthermore, we provide the domain-adaptive instance seg-
mentation performance (mAP), which helps to understand
the significance of each instance loss towards the adapta-

tion process for instance segmentation.
We ablate all 5 instance losses, including the losses

in the RPN and RoI heads. There are 2 losses in the
RPN head, RPN bounding-box classification and regres-
sion losses (LRPN-cls, LRPN-box), and 3 losses in the RoI
head, RoI bounding-box classification, regression, and RoI
mask classification losses (LRoI-cls, LRoI-box, LRoI-mask).
For this ablation, we train 8 models with different combina-
tions of the instance losses on the SYNTHIA → Cityscapes
benchmark. The models are trained following the same
setup as EDAPS.

The results of the ablation study in Table 4 provide in-
teresting observations: Without RPN losses, the mPQ de-
creases from 41.2 to 30.8. At a closer look, we note that in-
stance segmentation (mAP) and recognition quality (mRQ)
are adversely affected the most. That implies, in the ab-
sence of good quality region proposals, the network strug-
gles to generate correct instance segmentation masks, and
there is an increase in false detections (false positives and
false negatives). Besides, the RPN box regression loss con-
tributes more to the overall performance improvement than
the RPN box classification loss.

In the absence of the RoI head’s box classification and
regression losses, the model shows the lowest mPQ, mAP,
mRQ, and mSQ of 29.5, 0.5, 38.4, 45.5, respectively. It



Table 4: EDAPS instance head losses ablation study on the SYNTHIA → Cityscapes UDA panoptic benchmark. The results
of the trained models are averaged over 3 random seeds.

LRPN-cls LRPN-box LRoI-cls LRoI-box LRoI-mask mAP mIoU mSQ mRQ mPQ

Model 1 ✓ ✓ ✓ 9.3 ±4.4 57.5 ±0.4 70.9 ±7.3 43.2 ±5.8 30.8 ±1.3

Model 2 ✓ ✓ ✓ ✓ 4.8 ±2.1 57.9 ±1.1 62.9 ±2.4 38.8 ±0.3 29.6 ±0.2

Model 3 ✓ ✓ ✓ ✓ 16.9 ±5.9 57.8 ±0.4 72.5 ±1.6 45.1 ±3.2 34.7 ±2.4

Model 4 ✓ ✓ ✓ 0.5 ±0.3 57.3 ±0.4 45.5 ±0.1 38.4 ±0.7 29.5 ±0.5

Model 5 ✓ ✓ ✓ ✓ 2.3 ±2.0 57.9 ±0.5 45.6 ±0.1 38.4 ±0.4 29.5 ±0.3

Model 6 ✓ ✓ ✓ ✓ 29.6 ±0.4 57.5 ±0.4 71.7 ±0.5 50.4 ±0.7 38.2 ±0.7

Model 7 ✓ ✓ ✓ ✓ 9.7 ±1.9 57.0 ±1.3 65.3 ±3.8 43.7 ±1.6 32.7 ±0.9

Model 8 ✓ ✓ ✓ ✓ ✓ 34.4 ±0.5 57.5 ±0.0 72.7 ±0.2 53.6 ±0.5 41.2 ±0.4

implies that the RoI-pooled features play a vital role; the in-
stance head trained without losses on the RoI features strug-
gles to achieve high-quality instance segmentation. Inter-
estingly, the RoI head’s box classification loss contributes
more to the overall performance gain than the box regres-
sion loss. Since the RPN box regression loss already helps
the network to learn better instance bounding boxes, even
if the RoI head box regression loss is turned off, it achieves
an mPQ of 38.2, which is already better than the 32.1 mPQ
of the prior work CVRN [7]. However, it is crucial for the
RoI head to learn the correct box label classification; since
the RPN box classification loss is only responsible for pro-
viding correct binary labels (object vs. no-object) for the
region proposals, the RoI box classification loss helps the
instance head to learn correct instance class labels (i.e., the
8 thing object classes) for the RoI-predicted boxes. Finally,
in the absence of the RoI mask classification loss, the mPQ
goes down from 41.2 to 32.7, which shows that it is crucial
for the network to learn the correct binary instance masks
to achieve better panoptic segmentation quality.

6. Qualitative Analysis

In this section, we provide additional qualitative predic-
tion results for a visual comparison of the proposed EDAPS
and the prior art CVRN [7]. The visualizations for models
trained on SYNTHIA → Cityscapes are presented in Fig. 1-
4. The major improvements come from better panoptic seg-
mentation of the thing classes person (Fig. 1), rider (Fig.
2), car (Fig. 3); and stuff classes traffic light, traffic sign,
pole (Fig. 2, 3, and 4) across different object scales, appear-
ance, and viewing angles. In general, EDAPS can better de-
lineate object boundaries, resulting in better-quality pixel-
level panoptic segmentation. Note that the detected object
shapes (e.g., person, rider, car) predicted by the EDAPS
resemble more real-world object shapes when compared to
CVRN [7]. Thanks to the domain-robust Mix Transformer
(MiT-B5) [12] backbone, EDAPS can learn a richer set of
domain-invariant semantic and instance features helpful in

better segmentation of fine structures. EDAPS can better
segment the occluded object instances in a crowded scene
such as person (Fig. 1 row 1-5), rider (Fig. 2 row 1), car
(Fig. 3 row 1-8). Moreover, the person segments predicted
by EDAPS preserve finer details of the human body even
when instances are occluded. Similar observations can be
made for the rider and car classes. For large object in-
stances (such as bus), EDAPS can segment out the entire
object, whereas CVRN fails to do so (Fig. 2 row 8, Fig.
4 row 1). EDAPS can provide better segmentation for the
traffic light (Fig. 2 row 1, 8; Fig. 4 row 3, 4), and traffic
sign (Fig. 2 row 4, 8; Fig. 4 row 1, 4, 5).

In addition, we show visual qualitative results on
SYNTHIA → Mapillary Vistas UDA panoptic benchmark
(Fig. 5-7). EDAPS segments better the pole instance (Fig.
5 row 5). In Fig. 6 and 7, we present a visual comparison
with the Source-Only model. It can be observed that the
Source-Only model struggles to learn the correct class
labels and instance masks, whereas EDAPS successfully
bridges the domain gap by learning the correct semantics
and instances. EDAPS produces better panoptic segmenta-
tion for the bus (Fig. 6 row 1, Fig. 7 row 1, 2, 3), rider (Fig.
6 row 2, 3, Fig. 7 row 5), motorbike (Fig. 6 row 3, Fig. 7
row 6), car (Fig. 7 row 3, 4), traffic sign (Fig. 6 row 6, Fig.
7 row 1). Finally, the visual predictions on Cityscapes →
Foggy Cityscapes are shown in Fig. 8.

7. Visual Comparison: EDAPS vs. M-Dec-BU

This section offers a visual comparison of the predic-
tions made by EDAPS and M-Dec-BU on the SYNTHIA →
Cityscapes benchmark, as depicted in Fig. 9. We observed
that the M-Dec-BU baseline model tends to segment ob-
jects (like pedestrians, cars, buses, and riders) into smaller
parts than necessary (i.e., over-segmentation). Notice that
the pedestrian, car, and bus instances in Figs. 9 (a-d) are
over-segmented. This over-segmentation problem is more
prominent in scenes with large and occluded objects.



The M-Dec-BU model adopts a bottom-up approach for
instance segmentation [3]. Unlike top-down methods [5],
M-Dec-BU’s instance head does not directly predict in-
stance segmentation masks. Rather, it predicts instance cen-
ters and offsets. An additional post-processing step is re-
quired to generate the class-agnostic instance segmentation
masks from these predicted centers and offsets. We found
that the center predictions are not sufficiently robust under a
domain shift (even with domain adaptation) to support reli-
able post-processing on the target domain which leads to an
over-segmentation problem as discussed above. In contrast,
we noticed that EDAPS’s top-down instance segmentation
head predicts highly generalizable instance masks on the
target domain resulting an improved instance segmentation
performance (mAP 34.4%) as compared to 17.6% mAP of
M-Dec-BU.
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Image CVRN [7] EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 1: Example predictions showing better panoptic segmentation for person on SYNTHIA → Cityscapes.



Image CVRN [7] EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 2: Example predictions showing better panoptic segmentation for rider, motorbike, bus, and sign classes on SYNTHIA
→ Cityscapes.



Image CVRN [7] EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 3: Example predictions showing better panoptic segmentation for thing (car) and stuff (wall, sign, light) classes on
SYNTHIA → Cityscapes.



Image CVRN [7] EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 4: Example predictions showing better panoptic segmentation for bus, traffic sign and traffic light on SYNTHIA →
Cityscapes.



Image CVRN [7] EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 5: Example predictions on SYNTHIA → Mapillary Vistas.



Image Source-Only EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 6: Example predictions on SYNTHIA → Mapillary Vistas.



Image Source-Only EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 7: Example predictions on SYNTHIA → Mapillary Vistas.



Image EDAPS (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 8: Visual prediction results of EDAPS on Cityscapes → Foggy Cityscapes.



(a) (b)

(c) (d)

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 9: Visual comparison of EDAPS and M-Dec-BU (baseline) predictions on SYNTHIA → Cityscapes.


