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A. Node classification Experiments
A.1. Datasets

Transductive datasets. We evaluate on the three cita-
tion benchmark datasets Cora, Citeseer and Pubmed [26]
introduced by [41]. Each citation graph contains nodes corre-
sponding to documents and edges indicating citations. Node
features are bag-of-words features and node labels are cat-
egorized by topic. We follow the semi-supervised setting
in [41] and [16] along with their train/test splits. Inductive
datasets. In an inductive setting, we evaluate our approach
on three datasets: 1. Flickr [42] — categorizing images
based on their descriptions; 2. Reddit [42] — predicting the
communities of online posts from user comments. 3. PPI
[11] — classifying protein-protein interactions.

A.2. Dataset details

In Table 1 we provide dataset statistics on the node classi-
fication datasets used in this paper.

Table 1. Dataset statistics. ‘s’ stands for single class classification
and ‘m’ for multi-class.

Dataset Nodes Edges Features Classes Train / Val / Test
Cora 2,708 5,429 1,433 7 (s) 140 / 500 / 1,000
Citeseer 3,327 4,732 3,703 6 (s) 120 / 500 / 1,000
PubMed 19,717 44,338 500 3 (s) 100 / 500 / 1,000
PPI 56,944 81,8716 50 121 (m) 44,906 / 6,514 / 5,524
Flickr 89,250 899,756 500 7 (s) 44,760 / 22,312 / 22,312
Reddit 232,965 11,606,919 602 41 (s) 153,756 / 23,295 / 55,911

A.3. Implementation details

We integrate our DGG into the official publicly avail-
able code of all baselines, without architectural modification.
Models are trained and evaluated as their original implemen-
tation.

In our DGG, all MLPs use a single fully-connected layer
of dimension 64. In our DGG, all MLPs use a single fully-
connected layer of dimension 64. We use a Gumbel-Softmax
temperature of 2.5. When adding Gumbel noise to the edge
log-probabilities, we do not add any to the self-loops (i.e.

the diagonal of the edge probability matrix). During training,
we keep the Gaussian and Gumbel noise on, but turn it off
during inference. While in practice it can be left on, we
found it does not significantly impact the results.

A.4. Training details

We train the entire network end-to-end using the classi-
fication loss from the downstream model and an annealed
MSE loss on the adjacency matrix generated by the DGG:

Ltotal = Lclass +
α

M

M∑
i=1

(yi − ŷi)
2, (1)

where the first term is the classification loss from the down-
stream GCN, the second term is the MSE loss applied to
every element ŷi of the adjacency matrix ˆA ∈ RN×N for
which we have a node label, and α is loss weight. The model
can be trained by annealing α smoothly or in a stepwise
manner. In practice we keep α constant for the first 100
epochs and then set it to zero for the rest of the training
schedule (where the total number of epochs is determined by
the schedule of the downstream GCN).

A.5. Comparison with bespoke architectures exper-
iment settings

In Table 4 of the main paper we compare against bespoke
SOTA architectures which learn the graph structure. Here
we explain the choice of our backbone and the experiment
setting to compare against each architecture:

1. Setting 1: IDGL [3] uses an attention mechanism so we
choose the Graph Attention Network (GAT) [35] as our
backbone. The experiment setting is the same as that in
[16].

2. Setting 2: Both LDS [9] and SLAPS [8] use regular
graph convolutions so we choose the GCN [16] as our
backbone. In this setting there is no input graph, and
the training split includes half of the validation graph.
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3. Setting 3: NodeFormer [37] is based on a Transformer
[34] so we choose GAT [35] as our backbone. The data
splits now include 50 %, 25 % and 25 % of the full
graph for training, validation and testing respectively.

4. Setting 4: VGCN [7] uses a variational framework, and
as there is no directly applicable backbone, we compare
it against our best performing backbone GAT [35]. The
training split includes half of the validation set.

A.6. Robustness to noise

We test the effect of the DGG when the input graph has
random edges added across it. We do this by adding edges
between previously unconnected nodes. Broadly, the re-
sults in Fig. 1 demonstrate the detrimental effects of noisy
edges on classification accuracy, but the inclusion of the
DGG can mitigate this. Interestingly, the state-of-the-art
GCNII [2] demonstrates the largest drops in accuracy as the
noise increases, which may be attributed to the depth of their
graph convolution layers. In such deeper message-passing
models, the edge structure is even more significant, highlight-
ing the importance of learning a structure that prevents the
propagation of irrelevant information.

B. Trajectory Prediction Experiments

B.1. Dataset details

ETH and UCY. ETH [27] and UCY [18] are two com-
mon benchmarks for pedestrian trajectory prediction. These
datasets consist of 5 subsets of widely used real-world pedes-
trian trajectories [?, ?, 22, ?]. The primary challenge in
these datasets are the frequent interactions of agents in very
crowded scenes. Furthermore, the number of pedestrians
varies considerably. Some frames contain only 2 pedestrians,
while many have over 50.

SportVU. The STATS SportVu [32] is a tracking dataset
composed of multiple NBA seasons. Each scene consists of
two teams of 5 players, with each team categorized as either
making an offensive or defensive play in a particular game.
Each play contains 50 timesteps sampled at 5Hz, with the
player trajectories expressed in (x, y, z) coordinates.

Stanford Drone. The Stanford Drone Dataset (SDD) [28]
is a large dataset with 20 different top-down scenes across
multiple areas at Stanford University. Each scene consists of
agents of different types, from pedestrians and skaters to cars
and buses. Trajectories are recorded at 2.5Hz and expressed
in (x, y) world coordinates. Despite the heterogeneity of
agents, the maximum number of agents in any one scene is
21.

Baselines. We integrate our DGG module into two state-
of-the-art trajectory prediction pipelines: Social-STGCNN
[22] built upon a spatio-temporal convolutional network us-
ing graphs to represent pedestrian trajectories and DAGNet

[23] built upon a VAE backbone [14] with a graph atten-
tion network modelling agent interactions across a fully-
connected graph. Our DGG is placed within both networks
to generate the adjacency matrix on the fly and forms part of
its forward and backward pass. To integrate the DGG with
DAGNet’s attention mechanism, the adjacency generated is
multiplied by the attention weights.

Implementation details. We integrate DGG into the pub-
licly available code of each method, without any architectural
modification. We use the same DGG hyperparameters as for
node classification except the intermediate loss is disabled
and the training signal is entirely from the downstream task.

B.2. Qualitative results

In Fig. 2 we plot the node-degree distribution learned
by our DGG across multiple datasets. While on average,
a pedestrian may only look at their 2 nearest neighbors in
crowded scenes such as Zara1 and Univ, this can increase to
almost 5 nearest neighbors in some cases. This suggests that
both a fully-connected graph, or one with a fixed node-degree
like DGM [13] are both suboptimal.

Figure 3 compares our predicted trajectories to DGM
[13], on the SportVU dataset. As shown, our trajectories are
closer to the ground truth. We illustrate this further in Fig. 4,
which shows the graph generated by our DGG for 3 different
basketball players in a game. The figure demonstrates how
our DGG lets each player look at a different number of
neighbors, while DAGNet [23] forces each player to look at
all others in the game.
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Figure 1. Node classification accuracy with noisy edges added to the input graph of different datasets.

Figure 2. Distribution of the learned node degree k over the test split for different trajectory prediction datasets.
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