
Supplementary Material
Chop & Learn: Recognizing and Generating Object-State Compositions

Nirat Saini* Hanyu Wang* Archana Swaminathan Vinoj Jayasundara Bo He

Kamal Gupta Abhinav Shrivastava

University of Maryland, College Park

Contents

1. Scope and Limitations 1

2. Future Work 1
2.1. Green Screen Removal (extension). . . . . . 1
2.2. 3D reconstruction . . . . . . . . . . . . . . . 2

3. Details of User Study 2

4. Compositional Image Generation 3
4.1. Dataset Split . . . . . . . . . . . . . . . . . 3
4.2. Number of views. . . . . . . . . . . . . . . . 3
4.3. Patch FID Details . . . . . . . . . . . . . . . 3
4.4. Object State Classifier Details . . . . . . . . 4
4.5. Method Details . . . . . . . . . . . . . . . . 4
4.6. Additional Qualitative Results . . . . . . . . 4

5. Compositional Action Recognition 4
5.1. Dataset Splits . . . . . . . . . . . . . . . . . 4
5.2. First and last segment classification . . . . . 5
5.3. Finetuning Backbone . . . . . . . . . . . . . 5

6. Project Webpage and License 6

1. Scope and Limitations

The objective of ChopNLearn dataset is compositional
generation and recognition, using a granular and structural
understanding of transferable object states. Terms such as
‘slice’, ‘dice’ alone often lead to a loss of granular infor-
mation. For e.g., a sliced apple can be horizontally or ver-
tically sliced, or cut in the half, and then sliced as semi-
circles. Hence, we use more specific categories than other
traditional state change datasets as shown in Tab. 1. More-
over, the subtle state change understanding is a challenging
task on its own merit [3, 14, 15]. Recognizing/segmenting
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Figure 1. Confusion matrix for generation & action-based tasks.

actions in a video is a complementary task and an interest-
ing future direction, but is currently beyond the scope of this
work.

Moreover, we acknowledge that making the classes more
granular can be confusing for the model, which appears
similar. To confirm this, in Fig. 1, we show the confu-
sion matrix for generated images (classified by the State-
Classifier, and action-based method using the final states
(CAF+R3D for Split 3 in Tab. 3). We see baton and juli-
enne, half round slice and round slice, are two difficult pairs
for compositional generation. In contrast, the action-based
method can classify most states correctly. We hypothesize
that since action-based methods use trajectory, and multi-
ple frames for classification, the confusion between similar
object-state pairs is significantly reduced.

2. Future Work
2.1. Green Screen Removal (extension).

As described in Section 4.3 of main paper, we chose
green screen to focus on the object states, and such that the
object pieces can be segmented easily. As some preliminary
work, in Figure 2, shows some results on how thresholding
using simple opencv library functions works for segmenting
the object pieces after styles of cuts are applied. Further, we
use Midjourney [1], which is a Stable Diffusion [6] based
text to image generator tool, to generate a set of images
with chopping boards. For each camera angle, we generate
7-10 images, for red, yellow, blue, white and wooden chop-
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Figure 2. We show different uses of our dataset. The first column shows the raw images. The second column shows basic Python based
green screen removal techniques on the dataset. The third column uses generated kitchen chopping board images replacing the green screen
using the segmented object pieces. The fourth column shows results of training stable our benchmark SD+TI+FT model with the images
without a green screen. Further the rightmost four columns show promising results towards 3D reconstruction of deformable objects, which
can be a potential future research problem ChopNLearn can be used for.

ping boards. The captions used for this explain the color
of board, the view or angle and the surrounds, for instance
“empty plastic red colored chopping board in from this view
point –style raw ” is one of the captions used for one view.
Nonetheless, we are aware that achieving precise camera
angles during image generation is a challenging task. Many
of these models exhibit a bias toward placing certain fruits
or vegetables around or atop the chopping board. As a re-
sult, we have occasionally supplemented the model with
a reference image from the dataset, accompanied by a di-
rective to ”generate the same viewpoint and camera angle
relative to the chopping board.” Despite these efforts, the
outcomes we achieve remain suboptimal, particularly when
it comes to three-dimensional perspectives. The top view
seems to yield the most favorable outcomes for background
generation. We utilize these images to substitute the back-
grounds in segmented images. However, there are instances
where the generated background’s view and angle do not
align with those of the actual image from which the ob-
ject segments originated. This occasionally results in sec-
tions of the objects appearing to levitate above the chop-
ping board. While we acknowledge that the authenticity of
these generated images may sometimes fall short due to oc-
casional inaccuracies in green screen removal and misalign-
ment between object positioning and background image an-
gles, this experiment still holds value in mitigating green
screen bias during model training. Additionally, our anal-
ysis with respect to green screen removal and background

addition sheds light on a significant prospective challenge
– the ability to mat and position objects convincingly from
diverse angles within backgrounds to achieve a realistic ef-
fect. Hopefully, paves the way for new avenues of research
and potential applications of ChopNLearn in the realm of
detailed background matting.

2.2. 3D reconstruction

Collecting data as well as generating 3D models for de-
formable objects is still an open problem. We demonstrate
results of some preliminary experiments with our dataset for
this task. We use RealFusion [8] to recover a promising 3D
scene from a single image of our various cut states Figure 2.
We believe that with our multi-view camera setup, this di-
rection is worth exploring in future work for more accurate
3D reconstruction and can be an interesting task.

3. Details of User Study
The purpose of conducting a user study was to see if our

generative models were able to create images that were of
high fidelity and stayed true to capturing the semantic un-
derstanding of the object-state composition provided as a
text prompt. We chose 20 compositions from the test set,
which are unseen as a pair in the training and finetuning
of the generative models. These compositions from the
test set are also given as a text prompt to five generative
models, i) Dreambooth ii) Stable Diffusion iii) Stable Dif-
fusion+Textual Inversion iv) Stable Diffusion finetuned on



Figure 3. Examples of images from the test set and samples from
the generative models presented to participants in the user study

Figure 4. Snapshot of questionnaire presented to participants of
the user study

our training dataset v) Stable Diffusion + Textual Inversion
finetuned on our training dataset. We evenly chose a distri-
bution of 5 samples per composition, and including the test
set + 5 generative models, we had 6 sets to sample images
from. The total number of images used for the study was
750 and we asked 30 participants to label each of these im-
ages for their object and state as well as rate the realism on
a scale of 1-5. We show some examples of images encoun-
tered in our user study in Figure 3 and a snapshot of how
the user study questionnaire looks like in Figure 4.

4. Compositional Image Generation
4.1. Dataset Split

In the compositional image generation task, we split all
(object, state) compositions into a training set consisting of
87 compositions and a test set consisting of 25 composi-
tions. For each composition of object and state present in
the test set, the training set includes exactly one of either
the object, or the state, but not both. We also ensure that for
each (object, state) composition (o, si) in the test set, there
exists a composition (o, sj) in the training set, where si and
sj belong to the same state related group defined in Sec-
tion 3 of our main paper. Each combination in our dataset
has 8-12 images, resulting in a total of 1032 images in the
training set and 296 images in the test set. Figure 5 illus-
trates the detailed dataset split used in the compositional
image generation task. In this figure, training compositions
and test compositions are marked with orange and teal, re-
spectively. Unmarked compositions are not included in our
dataset. Figure 6 and Figure 7 show some example images
in our training set and test set, respectively.

w: whole
p: peel

lc: large cut
sc: small cut

b: baton
j: julienne

rs: round slice
hrs: half round

: training : test

Figure 5. Dataset Split used in The Compositional Image Gen-
eration Task. Training compositions and test compositions are
marked with orange and teal, respectively. Unmarked composi-
tions are not included in our dataset.

4.2. Number of views.

We assess the impact of the number of views on the im-
age generation task in Tab. 1 using the SD+FT+TI setting.
Using more views improves training data in terms of both
quantity and diversity, yielding results with better patch FID
and object accuracy, and maintaining high state accuracy
even though generating images in more views is more diffi-
cult. The use of 4 cameras also has applications in few-shot
3D reconstruction tasks, which although beyond the scope
of current work, are discussed in Section 2.

Table 1. Number of views ablation results.
View IDs Object Acc. (%) ↑ State Acc. (%) ↑ Patch FID ↓
1 42.4 78.2 184.7
1, 2 56.8 81.2 121.4
1, 2, 3 66.2 78.3 115.4
1, 2, 3, 4 67.8 81.4 82.2

4.3. Patch FID Details

We propose patch FID to access the quality of the gen-
erated images. In short, it calculates Fréchet Inception Dis-



tance on the image patch level. Specifically, we modify the
standard FID by sampling 224 × 224 random crops from
the real images, as well as the synthetic images. We use 32
patches per image. For each generative model, we compute
patch FID using all available real image patches and 16000
generated image patches, and report the average number for
the test compositions.

4.4. Object State Classifier Details

As mentioned in our main paper, to automatically eval-
uate the correctness of the generated images, we train a
classifier on real images for classifying objects and states
independently. This classifier is built on a CLIP-ViT-
B/32 [11]. To classify an input image, it takes this image
and texts of all possible labels (all objects or all states) as
input. Cosine similarities between the image embedding
and text embeddings of all possible labels are computed as
the classification logits, which are used to calculate the stan-
dard cross entropy loss for classification problems. During
hyperparameter-searching, we fine-tune the CLIP model on
a different training split that all (object, state) compositions
are seen, and report the validation accuracies in the Table 2
of our main paper. One single model is used to predict both
object and state.

After deciding on all hyperparameters and training set-
tings, we train our final-version object state classifier on all
available data in our dataset to maximize its performance.
We keep all parameters in the CLIP model learnable and
train it 2000 epochs using a learning rate of 3e − 5. We
use a batch size of 128, and a warm-up cosine learning rate
schedule [7].

4.5. Method Details

Stable Diffusion. (SD) We briefly describe classifier-free
guidance in diffusion models. Diffusion models generate an
image from Gaussian noise via an iterative denoising pro-
cess. Expected mean square error is used as the denoising
objective:

LDiff = Ex0,ϵ,t∼U(0,1)

[
∥ ϵ− ϵθ(αtx0 + σtϵ, c) ∥2

]
(1)

where x0 is an image and c is the optional condition from
the training data. ϵ is the additive Gaussian noise. αt, σt

are scalar functions of time step t. ϵθ is the diffusion model
with trainable parameters θ. For sampling images from
the text condition, SD employs classifier-free guidance [6],
such that at every time step (during sampling), predicted
noise is adjusted via:

ϵ̂θ(xt, c) = ωϵθ(xt, c) + (1− ω)ϵθ(xt) (2)

where ω is the guidance scale. In our experiments, ω is set
to be 7.5 in all methods using it.
SD + Textual Inversion (TI). In this method, Equation (1)
is used for token embedding optimization. SD weights are

kept fixed during training. We use a learning rate of 3e− 3
with a warm-up cosine learning rate schedule [7], a batch
size of 4, and train the model for 16000 steps.
DreamBooth. The text prompt we used for DreamBooth
fine-tuning is “An image of oi cut in the [V] style”, where
oi is the ith object and [V] is a rare unique identifier rep-
resenting the state this model is fine-tuned for. The goal of
DreamBooth is to overfit a small dataset without drifting too
far away from the pre-trained model. Following the avail-
able open-source implementation, we use a fixed learning
rate of 5e− 6, a batch size of 1, and train the model for 400
steps.
SD + Fine-tuning (FT). We also fine-tune SD while keep-
ing the text encoder fixed. The UNet parameters of the dif-
fusion model are optimized using the diffusion loss defined
by Equation (1). We use a learning rate of 5e − 6 with a
warmup cosine learning rate schedule [7], a batch size of 4,
and train the model for 8000 steps.
SD + TI + FT. When combining SD fine-tuning and Textual
Inversion [4] together, we use a learning rate of 5e − 6 for
all UNet parameters and a learning rate of 3e − 3 for all
added token embeddings. A warmup cosine learning rate
schedule [7] is employed for all parameters. We use a batch
size of 4, and train the model for 16000 steps.

4.6. Additional Qualitative Results

To better compare the compositional image generation
performance of various methods discussed in the main pa-
per, we show additional generated images from them for
seven (object, state) compositions in Figure 8 and Figure 9,
where the compositions are from the training set and test
set, respectively.

5. Compositional Action Recognition
5.1. Dataset Splits

Given the diversity of views and object types and styles,
we can construct multiple training and testing splits. In this
paper, we present results on three selected splits. For each
split, we create training, test and validation set. The val-
idation set is for evaluating the model on training classes,
which consists of 10-15% unseen samples for the seen train-
ing compositions. Training and test sets have a disjoint set
of compositional classes, in an 80-20% ratio. All of the
splits in our dataset are created based on object-final state
compositions in the videos.

We leverage these related groups defined in Section 3.1
in the main paper, to create different splits for training and
testing. All splits use multi-view camera angles and involve
creating seen and unseen object-final state compositions in
training and testing sets. This ensures cross-view training
and test splits, as used in other multi-view datasets [13, 17].
The training set consists of samples from three cameras,



Table 2. Input frames ablation. We do experiments on two settings to demonstrate that taking full video as input is necessary. The first
row takes the full length of the video as input. The second row takes the first and last frames of the video as input. Object-final state
classification accuracy is reported here.

Split 1 Split 2 Split 3

Input Model Features acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

Full Transformer [16] I3D [2] 10.9 44.3 14.6 44.2 11.1 44.4
First&Last Transformer [16] I3D [2] 6.3 25.6 9.8 31.0 7.9 34.9

Table 3. Other splits: We also present other possible splits of data. All the results are using I3D [2] pre-trained features along with one
layer Transformer [16] model. Comp. represents the initial: object-initial state composition and final: object-final state composition results
for each split.

Split 4 Split 5 Split 6 Split 7 Split 8 Split 9

Comp. acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

Initial 46.5 78.9 65.2 90.6 37.5 70.8 41.1 76.0 47.2 71.5 41.2 78.3
Final 45.3 75.9 73.9 92.6 37.7 69.2 41.4 72.2 48.9 73.0 42.9 77.6

while the test set includes samples of compositions from
one camera whose view is never seen during training.

Similar to the three splits mentioned in the paper, we
explore multiple other splits, with different constraints to
choose those 3 splits. We find that other splits were not
as challenging for the existing baselines, and hence only
propose 3 splits that are challenging. In Table 3, we present
the results for splits 4-9, which were considered for the data.
We only show I3D [2] based Transformer model for these
splits. All the splits consider the constraints for the object-
final state. The details of each split are as follows:
Split 4: This is the same as the split used for the Composi-
tional Image Generation task (mentioned in Section 4 of the
main paper). We use the related groups to split the object-
final states, such that objects which are seen with one of the
states in a related group in training, are tested on the other
related group during testing. This is also similar to Split 2
in the main paper, however, the multi-view constraint is not
there. All the camera views are used for training and testing.
Split 5: In this split, we have the participant constraint. All
samples from participants 1 and 2 are part of the training
set, while samples from participant 3 are in the test set.
Split 6: This is a combination of split 4 and 5, which has
two constraints: using related groups for splitting object-
final states in different splits, and using only participant id
3 for the test set.
Split 7: This split is about multi-camera view. We use Cam-
era 1,2,3 views in the training set, while the camera 4 view
is part of the test set. No other constraint regarding related
groups for splitting on the basis of object-final states is used.
Split 8: This split is similar to Split 1 in the main paper,
without the multi-camera constraint. The object-final state
compositions are split randomly into train/test. We use all
camera views for both sets, without constraining to distinct

views for each set.
Split 9: This split is similar to Split 3 in the main paper,
without the multi-camera constraint. The object-final state
compositions are split based on random groups for objects
and states. We use all camera views for both sets, without
constraining to distinct views for each set.
We do not have a split having all constraints, i.e. participant
constraint, related groups and multi-view constraint, since
all of these together end up leaving a total of 400 video
clips, which are very few for training and testing. We show
only top@1 accuracy for object-final state composition in
Table 3.

5.2. First and last segment classification

For compositional action recognition, we emphasize that
the model must learn to predict the object-initial state com-
position and the object-final state composition. Moreover,
some works [3, 12] use a similar setup for object state
classification and use only the first and last frame/segment
for this. Ideally, the first few frames and last few frames
should be sufficient for understanding the changes in object
states. We also experiment with the first and last segments
of videos, for classification. The results for the 3 selected
splits (mentioned in the main paper) are in Table 2. We find
that using the additional middle frames improves the classi-
fication accuracy for the final composition.

5.3. Finetuning Backbone

The results we show in the paper without finetuning any
pre-trained features (I3D [2], MIL-NCE [9], R3D [5]). For
the sake of completeness, we also show results with finetun-
ing the backbone for R3D features in Table 4. Although the
top@1 accuracy is much better, it is still not 100%. More-
over, the dataset is much smaller and overfits very quickly



Table 4. Results of finetuning R3D [5] backbone. “Start/End” denotes the prediction results for the initial and the final state composition
with the correct object type.

Split 1 Split 2 Split 3

Start End Start End Start End

Model Finetune acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

CAF [10] 53.5 88.7 57.8 88.7 55.1 95.7 58.0 95.7 62.0 93.0 63.4 93.0

CAF [10] ✓ 80.3 98.6 87.3 98.6 84.1 98.5 89.9 98.5 88.7 98.6 88.7 98.6

for backbones which are trained on 10x more data. Hence,
for sake of benchmarking, we propose not fine-tuning the
features for consistency.

6. Project Webpage and License
For more details, results and analysis, please visit our web-
site at: https://chopnlearn.github.io.
License. All files in this dataset are copyright by us
and published under the Creative Commons Attribution-
NonCommerial 4.0 International License, found at
https://creativecommons.org/licenses/by-nc/4.0/. This
means that you must give appropriate credit, provide a link
to the license, and indicate if changes were made. You may
do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use. You may
not use the material for commercial purposes.



Figure 6. Example Images In The Training Set. Eight example images are shown in a column for each state. State labels are shown in
the first row. Object labels are marked on the bottom right corner of each image.



Figure 7. Example Images In The Test Set. Eight example images are shown in a column for each state. State labels are shown in the
first row. Object labels are marked on the bottom right corner of each image.



Figure 8. Additional Compositional Generation Samples Using Training Compositions Ground Truth (GT) real images are shown in
the first row for reference. Seven object-state compositions in the training set are displayed, each with four generated samples for each
method. Please zoom in to see the details.



Figure 9. Additional Compositional Generation Samples Using Test Compositions Ground Truth (GT) real images are shown in the
first row for reference. Seven object-state compositions in the test set are displayed, each with four generated samples for each method.
Please zoom in to see the details.
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