
–Supplementary Materials–
DataDAM: Efficient Dataset Distillation with Attention Matching

Ahmad Sajedi1*, Samir Khaki1∗, Ehsan Amjadian2,3, Lucy Z. Liu2, Yuri A. Lawryshyn1,
and Konstantinos N. Plataniotis1

1University of Toronto 2Royal Bank of Canada (RBC) 3University of Waterloo
Code: https://github.com/DataDistillation/DataDAM

Contents

1. Implementation Details 1
1.1. Datasets . . . . . . . . . . . . . . . . . . . . 1
1.2. Data Preprocessing . . . . . . . . . . . . . . 1
1.3. Implementations of Prior Works . . . . . . . 1
1.4. Hyperparameters . . . . . . . . . . . . . . . 2

2. Additional Results and Further Analysis 2
2.1. Comparison to More Baselines . . . . . . . . 2
2.2. More Ablation Studies . . . . . . . . . . . . 2
2.3. More Experiments and Analysis on Neural

Architecture Search . . . . . . . . . . . . . 5

3. Additional Visualizations and Analysis 6
3.1. More Analysis on Data Distribution . . . . . 6
3.2. Extended Visualizations of Synthetic Images 6

1. Implementation Details
1.1. Datasets

We carried out experiments on the following datasets: CI-
FAR10/100 [14], TinyImageNet [16], ImageNet-1K [6], and
subsets of ImageNet-1K including ImageNette [12], Image-
Woof [12], and ImageSquawk [2]. CIFAR10/100 is a stan-
dard computer vision dataset consisting of natural images
with colored 32x32 pixels. It has 10 coarse-grained labels
(CIFAR10) and 100 fine-grained labels (CIFAR100), each
with 50,000 training samples and 10,000 tests. The classes of
the CIFAR10 are ”Airplane”, ”Car”, ”Bird”, ”Cat”, ”Deer”,
”Dog”, ”Frog”, ”Horse”, ”Ship”, and ”Truck,” which are mu-
tually exclusive. TinyImageNet is a subset of the ImageNet-
1K dataset with 200 classes. The dataset contains 100,000
high-resolution training images and 10,000 test examples
that are downsized to 64x64. ImageNet-1K is a standard
large-scale dataset with 1,000 classes, including 1,281,167
training examples and 50,000 testing images. Following
[29, 27], we resize ImageNet-1K images to 64x64 resolution

*Equal contribution

to match TinyImageNet. Compared to CIFAR10/100, Tiny-
ImageNet and ImageNet-1K are more challenging because of
their diverse classes and higher image resolution. To further
extend dataset distillation, we take a step forward by apply-
ing our method to even higher-resolution images, specifically
128x128 subsets of ImageNet. In previous dataset distillation
research [2], subsets were introduced based on categories
and aesthetics, encompassing birds, fruits, and cats. In this
study, we utilize ImageNette (assorted objects), ImageWoof
(dog breeds), and ImageSquawk (birds) to provide additional
examples of our algorithm’s effectiveness. For a detailed
enumeration of ImageNet classes in each of our datasets,
please refer to Table 1.

1.2. Data Preprocessing

We implemented a standardized preprocessing approach
for all datasets, following the methodology outlined in [26].
To ensure optimal model performance during both train-
ing and evaluation, we utilized several popular transforma-
tions, including color jittering, cropping, cutout, scaling,
and rotation, as differentiable augmentation strategies across
all datasets. For the CIFAR10/100 datasets, we addition-
ally applied Kornia zero-phase component analysis (ZCA)
whitening, using the same setting as [2]. However, we re-
frained from using ZCA preprocessing for the medium- and
high-resolution datasets due to the computational expense of
the full-size ZCA transformation. As a result, the distilled
images for these datasets display checkboard artifacts (see
Figures 18, 19, 20, 21, and 22). It is worth noting that we vi-
sualized the distilled images by directly applying the reverse
transformation based on the corresponding data preprocess-
ing without any further modifications.

1.3. Implementations of Prior Works

To ensure fair comparisons with prior works, we obtained
publicly available distilled data for each baseline method and
trained models using our experimental setup. We utilized the
same ConvNet architecture with three, four, or five layers,
depending on the image resolutions, and applied the same



Dataset 0 1 2 3 4 5 6 7 8 9

ImageNette [12] Tench English
Springer

Cassette
Player Chainsaw Church French Horn Garbage

Truck Gas Pump Golf Ball Parachute

ImageWoof [12] Australian
Terrier Border Terrier Samoyed Beagle Shih-Tzu English

Foxhound
Rhodesian
Ridgeback Dingo Golden Retriever English

Sheepdog

ImageSqauwk [2] Peacock Flamingo Macaw Pelican King
Penguin Bald Eagle Toucan Ostrich Black Swan Cockatoo

Table 1: Class listings for our ImageNet subsets.

preprocessing technique across all methods. In cases where
our results were comparable or inferior to those reported
in the original papers, we presented their default numbers
directly. Regarding the Kernel Inducing Points (KIP) method
[19, 20], we made a slight modification by employing a 128-
kernel ConvNet instead of the original 1024-kernel version.
To ensure fairness in accordance with the Matching Training
Trajectories (MTT) [2], we calculated performance based on
the average test accuracy across 100 networks rather than
relying on the best result reported in the paper. We did our
best to reproduce prior methods that did not conduct exper-
iments on some datasets by following the released author
codes. However, for methods that encountered scalability
issues on high-resolution datasets, we were unable to obtain
the relevant performance scores.

1.4. Hyperparameters

In order to ensure that our methodology can be repro-
duced, we have included a Table 2 listing all the hyperparam-
eters used in this work. For the baseline methods, we utilized
the default parameters that the authors specified in their origi-
nal papers. We used the same hyperparameter settings across
all experiments, unless otherwise stated. Specifically, we
employed an SGD optimizer with a learning rate of 1 for
learning synthetic sets and a learning rate of 0.01 for training
neural network models. For low-resolution datasets, we used
a 3-layer ConvNet, while for medium- and high-resolution
datasets, we followed the recommendation of [27] and used a
4-layer and 5-layer ConvNet, respectively. In all experiments,
we used a mini-batch of 256 real images from each class to
learn the synthetic set. Additionally, we conducted ablation
studies on certain hyperparameters, such as task balance λ
and the power parameter p in the Spatial Attention Matching
(SAM) modules, which are discussed in Section 2.2.

2. Additional Results and Further Analysis
2.1. Comparison to More Baselines

We conducted a comparison between images created by
the DataDAM and popular generative models such as varia-
tional auto-encoders (VAEs) [13, 21] and generative adver-
sarial networks (GANs) [9, 18, 1, 17] to evaluate their data
efficiency. For this purpose, we selected state-of-the-art mod-
els, including the DC-VAE [21], cGAN [18], BigGAN [1],
and GMMN [17]. The DC-VAE generates a model with dual

contradistinctive losses, which improves the generative au-
toencoder’s inference and synthesis abilities simultaneously.
The cGAN model is conditioned on both the generator and
discriminator, while BigGAN uses differentiable augmen-
tation techniques [26]. On the other hand, GMMN aims to
learn an image generator that can map a uniform distribution
to a real image distribution. We trained these models on the
CIFAR10 dataset with varying numbers of images per class
(1, 10, and 50 IPCs) using ConvNet’s (3-layer) architecture
[8] and evaluated their performance on real testing images.
Our results, presented in Table 3, indicate that our proposed
method significantly outperforms these generative models.
The DataDAM generates superior training images that offer
more informative data for training DNNs, while the primary
goal of the generative models is to create realistic-looking
images that can deceive humans. Therefore, the efficiency
of images produced by generative models is similar to that
of randomly selected coresets.

We also employed another baseline approach, which is
learning synthetic images through distribution matching us-
ing vanilla maximum mean discrepancy [10] (MMD) in the
pixel space. By utilizing MMD loss with a linear kernel,
we achieved improved performance compared to randomly
selected real images and generative models (see Table 3).
However, DataDAM surpasses the results of vanilla MMD
since it generates more informative synthetic images by uti-
lizing the information of the feature extractor at various
levels of representation.

IPC Random DC-VAE cGAN BigGAN GMMN MMD DataDAM

1 14.4±2.0 15.7±2.1 16.3±1.4 15.8±1.2 16.1±2.0 22.7±0.6 32.0±1.2
10 26.0±1.2 29.8±1.0 27.9±1.1 31.0±1.4 32.2±1.3 34.9±0.3 54.2±0.8
50 43.4±1.0 44.0±0.8 43.8±0.9 46.2±0.9 45.3±1.0 50.9±0.3 67.0±0.4

Table 3: Comparison of the DataDAM’s performance to popular
generative models and the MMD baseline on the CIFAR10 dataset
using ConvNets. The ”Random” category denotes randomly se-
lected real images.

2.2. More Ablation Studies

Evaluation of power parameter p in the SAM module.
This section examines how the p-norm impacts the efficiency
of spatial-wise attention maps in the SAM module. In Fig-
ure 1, we evaluate the testing accuracy of the DataDAM on
CIFAR10 with IPC 10 for various values of p. Our method
proves to be robust across a broad range of p values, indi-



Hyperparameters Options/ ValueCategory Parameter Name Description Range

Optimization

Learning Rate ηS (images) Step size towards global/local minima (0, 10.0] IPC ≤ 50: 1.0
IPC > 50: 10.0

Learning Rate ηθ (network) Step size towards global/local minima (0, 1.0] 0.01

Optimizer (images) Updates synthetic set to approach global/local minima SGD with Momentum: 0.5
Momentum Weight Decay: 0.0

Optimizer (network) Updates model to approach global/local minima SGD with Momentum: 0.9
Momentum Weight Decay: 5e− 4

Scheduler (images) - - -

Scheduler (network) Decays the learning rate over epochs StepLR Decay rate: 0.5
Step size: 15.0

Iteration Count Number of iterations for learning synthetic data [1,∞) 8000

Loss Function

Task Balance λ Regularization Multiplier [0,∞)
Low Resolution: 0.01
High Resolution: 0.02

Power Value p Exponential power for amplification in the SAM module [1,∞) 4
Loss Configuration Type of error function used to measure distribution discrepancy - Mean Squared Error
Normalization Type Type of normalization used in the SAM module on attention maps - L2

DSA Augmentations

Color Randomly adjust (jitter) the color components of an image
brightness 1.0
saturation 2.0
contrast 0.5

Crop Crops an image with padding ratio crop pad 0.125
Cutout Randomly covers input with a square cutout ratio 0.5

Flip Flips an image with probability p in range: (0, 1.0] 0.5
Scale Shifts pixels either column-wise or row-wise scaling ratio 1.2

Rotate Rotates image by certain angle 0◦ − 360◦ [−15◦,+15◦]

Encoder Parameters
Conv Layer Weights The weights of convolutional layers R bounded by kernel size Uniform Distribution
Activation Function The non-linear function at the end of each layer - ReLU
Normalization Layer Type of normalization layer used after convolutional blocks - InstanceNorm

Table 2: Hyperparameters Details.

Figure 1: The effect of the power parameter p on the final testing
accuracy (%) for the CIFAR10 dataset with IPC 10 configuration.

cating that it is not significantly affected by changes in the
degree of discrepancy measured by LSAM. However, when
the power is raised to 8, the DataDAM gives more weight
to spatial locations that correspond to the neurons with the
highest activations. In other words, it prioritizes the most
discriminative parts, potentially ignoring other important
components that may be crucial in approximating the data
distribution. This could negatively impact the testing perfor-
mance to some extent.

Exploring the effect of Gaussian noise initialization
for synthetic images on DataDAM. To augment our re-

Figure 2: Test accuracy evolution of synthetic image learning on
CIFAR10 with IPC 50 under Gaussian noise initialization.

sults in the main paper, we present an extended training
configuration for initialization from Gaussian noise. We con-
ducted this experiment on CIFAR10 with IPC 50. As seen
in Figure 2, the Gaussian noise initialization scheme takes
longer to converge to a competitive accuracy level. Despite
underperforming in comparison to Random and K-Center
initialization, it still demonstrates the ability of our proposed
method to distill information from the real dataset onto pure
random noise. Moreover, it is capable of outperforming com-
petitive methods, particularly KIP [19] and DSA [26]. In
Figure 3, we provide visualizations of the synthetic data gen-
erated from random noise during different iterations. These
visualizations highlight how our method successfully trans-
fers information from the real dataset to the random noise,
especially when comparing the initial noise image with the
final iteration.



(a) Iteration
0

(b) Iteration
600

(c) Iteration
2000

(d) Iteration
5000

(e) Iteration
15000

(f) Iteration
25000

(g) Iteration
35000

(h) Iteration
40000

Figure 3: The learning process of all classes in the CIFAR10 dataset (IPC 50) initialized from Gaussian noise. We take two random images
for each class and visualize their progression over the 40,000 training epochs.

Exploring the effect of different augmentation strate-
gies in DataDAM. In this section, we explore the impact of
augmentation methods on the effectiveness of our approach
when evaluated on the CIFAR10 dataset with an IPC 10
configuration. We treat our method as a black box, as in the
work of [5], and assess the effects of various augmentation
techniques such as AutoAugment [3], RandAugment [4],
DSA [26], and no augmentation on the distilled datasets dur-
ing the evaluation phase. The results are presented in Figure
4. Our observations reveal that DSA delivers significantly
better performance as it is integrated into the training pro-
cess of the synthetic dataset and is more compatible with
the learning phase of the distilled images. Additionally, our
findings indicate that augmentation is vital for training on
synthetic data, as evidenced by the substantial differences
between different augmentation methods and no augmen-
tation. Therefore, applying augmentation techniques to our
distilled images during evaluation can substantially enhance
model performance.

Exploring the effect of different loss configurations
in LSAM. In this section, we explore the impact of differ-
ent loss configurations on attention loss (LSAM). To conduct
this evaluation, we employed mean absolute error (MAE),

Figure 4: The effect of different augmentation strategies during the
evaluation phase on the final testing accuracy (%) for the CIFAR10
dataset with IPC 10 configuration.

cosine dissimilarity, and mean square error (MSE) as ob-
jective functions for LSAM to train a synthetic dataset on
CIFAR10 with IPC 10. The results presented in Figure 5
demonstrate that MSE yields the best results. Nonetheless,



Figure 5: The effect of loss configurations of LSAM on the final
testing accuracy (%) for the CIFAR10 dataset with IPC 10 configu-
ration.

it is crucial to note that even with any of these configura-
tions, our method still outperforms most of the competitive
methods (except the MTT [2]). Therefore, we can conclude
that our approach performs well with any loss configuration,
but a well-designed configuration can result in a substan-
tial performance improvement of up to 2.0% in our ablation
study.

Exploring the effect of normalization in the SAM mod-
ule. In this section, we aim to evaluate the impact of the
normalization block in the internal structure of the SAM
module on testing accuracy. We conducted experiments by
training distilled images for CIFAR10 with IPC 10 and test-
ing three normalization techniques: L1 normalization, L2

normalization, and no normalization. The results, as shown
in Figure 6, indicate that L2 normalization is the most effec-
tive in terms of testing accuracy. By adding normalization,
we reduce the magnitude of the attention loss LSAM in back-
propagation, thus decreasing the chance of overshooting the
global minima in the optimization space when modifying
the input image’s pixels. We can observe that both normal-
ization schemes work well, but the absence of normalization
leads to significant performance degradation. Therefore, we
conclude that while the appropriate use of normalization is
critical for the performance of the DataDAM, the type of
normalization is not as significant.

2.3. More Experiments and Analysis on Neural Ar-
chitecture Search

Taking inspiration from [28, 26, 27], we define a search
space consisting of 720 ConvNets on the CIFAR10 dataset.
We evaluate the models using our distilled data with IPC
50 as a proxy set under the neural architecture search
(NAS) framework. We start with a base ConvNet and con-
struct a uniform grid that varies in depth D ∈ {1, 2, 3,

Figure 6: The effect of different normalization blocks of the SAM
module on the final testing accuracy (%) for the CIFAR10 dataset
with IPC 10 configuration.

4}, width W ∈ {32, 64, 128, 256}, activation function
A ∈ {Sigmoid, ReLu, LeakyReLu}, normalization tech-
nique N ∈ {None, BatchNorm, LayerNorm, InstanceNorm,
GroupNorm}, and pooling operation P ∈ {None, MaxPool-
ing, AvgPooling}. These candidates are then evaluated based
on their validation performance and ranked accordingly.

In Figure 7, we displayed the performance rank correla-
tion between the proxy set, generated using various methods,
and the whole training dataset using Spearman’s correlation
across all 720 architectures. Each point in the graph repre-
sents a selected architecture. The x-axis represents the test
accuracy of the model trained on the proxy set, while the
y-axis represents the accuracy of the model trained on the
whole dataset. Our analysis shows that all methods perform
well. However, DataDAM has a higher concentration of dots
close to the straight line, indicating a better proxy set for
obtaining more reliable performance rankings of candidate
architectures. These results are on par with the DataDAM’s
performance correlation (0.72), which is higher than other
prior works. To further assess the effectiveness of our ap-
proach, we conducted an analysis of the top 20% of the
search space, selecting 144 architectures with the highest
validation accuracy. As depicted in Figure 8, our method
outperforms most of the state-of-the-art methods, except for
early stopping, where we only beat it by a small margin. Our
evaluation of the correlation graphs indicates that DataDAM
is capable of accurately correlating the performance of mod-
els trained on the proxy dataset with their performance on the
whole training dataset. We substantiate these findings by pre-
senting quantitative results of performance and Spearman’s
correlation in Table 4.



Random DSA DM CAFE Ours Early-stopping Whole Dataset

Performance (%) 88.9 87.2 87.2 83.6 89.0 88.9 89.2
Correlation Top 20% 0.44 0.57 0.51 0.36 0.69 0.64 1.00

Time cost (min) 33.0 31.2 32.2 30.7 34.8 37.1 5168.9
Storage (imgs) 500 500 500 500 500 5 × 104 5 × 104

Table 4: Neural architecture search on CIFAR10 with a search space
of the top 20% of the sample space with the highest validation
accuracy.

Experiments on NAS-Bench-201. To conduct a more
comprehensive analysis of the neural architecture search,
we expanded the search space by including NAS-Bench-
201 [7] as recommended in [5]. Our aim is to compare the
performance of DataDAM against other methods using the
CIFAR10 dataset with IPC 50 as the proxy set. To create
a search space, we randomly selected 100 networks from
the 15,635 available models in NAS-Bench-201. We fol-
lowed the configuration and settings presented in [5], which
involve training all models using five random seeds and
ranking them based on their average accuracy on a valida-
tion set comprising 10,000 images. We used two metrics
to evaluate the effectiveness of NAS: the performance cor-
relation ranking between models trained on synthetic and
real datasets and the top-1 performance in the search space.
In contrast to the previous search space that concentrated
on 720 ConvNet architectures, we observed a distinct trend
in this larger NAS benchmark with modern architectures.
According to Table 5, while most methods achieved negative
correlations between performance on the proxy set and the
entire dataset, our method had a small positive correlation
and obtained competitive outcomes on the original dataset.
This implies that DataDAM preserves the true strength of
the underlying model more effectively than previous works.
Nevertheless, despite the encouraging performance gains
achieved by the best single model, utilizing the distilled data
to guide model design remains a significant challenge. It is
important to mention that the rank correlation presented in
Table 5 for the original real dataset is not 1.0. This is because
a smaller architecture was used and the ranking was based
on a validation set, as pointed out in [5].

Random DC DSA DM KIP MTT DataDAM Whole Dataset

Correlation -0.06 -0.19 -0.37 -0.37 -0.50 -0.09 0.07 0.7487
Top 1 (%) 91.9 86.44 73.54 92.16 92.91 73.54 93.96 93.5

Table 5: Spearman’s rank correlation results were obtained using
NAS-Bench-201. The best performance achieved on the test set is
94.36% [5].

3. Additional Visualizations and Analysis
3.1. More Analysis on Data Distribution

To complement the data distribution visualization results
presented in the main paper, we have included t-SNE [24]
illustrations for all categories in Figure 9. We utilized t-SNE
to show the features of real and synthetic sets generated by

DC [28], DSA [26], DM [27], CAFE [25], and DataDAM in
the embedding space of the ResNet-18 [11] architecture. The
visualizations were applied to the CIFAR10 dataset with IPC
50 for all methodologies. As depicted in Figure 9, our ap-
proach, similar to DM, preserves the distribution of data with
a well-balanced spread over the entire dataset. Conversely,
other methods, such as DC, DSA, and CAFE, exhibit a sig-
nificant bias toward the boundaries of certain clusters and
have high false-positive rates for the majority of the classes.
To put it simply, the t-SNE visualization validates that our
method maintains a considerable degree of impartiality in ac-
curately capturing the dataset distribution uniformly across
all categories.

3.2. Extended Visualizations of Synthetic Images

Visualization of the synthetic images trained with dif-
ferent model architectures in DataDAM. In this section,
we present a qualitative comparison of the generated distilled
images using different architectures to demonstrate how the
choice of architecture influences the quality of the synthetic
set. We assess the efficacy of the distilled data trained using
ConvNet [8], AlexNet [15], and VGG-11 [23] architectures
on the CIFAR10 dataset with IPC 50. Our results, as depicted
in Figure 10, reveal that the distilled data can encode the
inductive bias of the chosen architecture. Specifically, the
distilled images produced by the simplest architecture, i.e.,
ConvNet [8], exhibit a natural appearance and can transfer
well to other architectures (see Table 3 of the main paper).
In contrast, the distilled images generated by modern archi-
tectures like VGG-11 [23] exhibit different brightness and
contrast than natural images. We found that increasing the
complexity and number of convolutional layers in the feature
extraction process led to brighter and more contrasting dis-
tilled images. This is likely because the attention loss (LSAM)
becomes more potent, resulting in a more substantial modula-
tion effect on the input image pixels during backpropagation.
This trend is noticeable in the distilled images generated by
AlexNet [15] and VGG-11 [23]. We note that the synthetic
images may reflect the similarity between architectures, as
evidenced by the similarity between the images produced
by AlexNet and ConvNet. This finding suggests that the
inductive biases of these two architectures are comparable.

Visualization of the synthetic images trained with dif-
ferent loss components in DataDAM. This section involves
a comparison of the synthetic images generated by utilizing
different loss objectives, namely only LMMD, only LSAM,
layer-wise feature map transfer loss, and the DataDAM loss.
The CIFAR10 dataset with IPC 10 was used for this eval-
uation to qualitatively assess the contribution of each loss
component. As shown in Figure 11, the visualization of
DataDAM is a linear combination of the LSAM and LMMD
visualizations, resulting in a brighter and more contrasted
image compared to each loss component individually. The



(a) EarlyStop (b) Random (c) DSA

(d) DM (e) CAFE (f) DataDAM

Figure 7: Performance rank correlation between proxy set and whole dataset training across all 720 architectures.

(a) EarlyStop (b) Random (c) DSA

(d) DM (e) CAFE (f) DataDAM

Figure 8: Performance rank correlation between proxy-set and whole-dataset training across the top 20% of the search space (selecting 144
architectures with the highest validation accuracy).



Figure 9: Distributions of the synthetic images learned by five methods on the CIFAR10 dataset with IPC 50. The stars represent the synthetic
data dispersed amongst the original dataset. The classes are as follows: plane, car, bird, cat, deer, dog, frog, horse, ship, truck.

generated synthetic sets by LSAM and layer-wise feature
transfer loss are somewhat similar since both losses match
the information of feature maps generated by the real and
synthetic datasets. However, the images distilled by LSAM
are brighter and more contrasted due to the matching of the
most discriminative parts of the images.

Visualization of the synthetic images trained with dif-
ferent layers in DataDAM. We conducted an experiment to
analyze the distilled images produced by matching different
layers of the ConvNet on real and synthetic datasets. Our
study focused specifically on the CIFAR10 dataset with IPC
10. Figure 12 demonstrates that the layers performed differ-
ently as each layer conveyed distinct information regarding
the data distributions. Our approach, DataDAM, utilizes all
intermediate and final layers, resulting in distilled images
that possess greater brightness and contrast. This is primarily
due to the matching of attention maps in each layer as well
as the embedding representation of the final layer.

Visualization of the synthetic images trained with dif-
ferent initialization strategies in DataDAM. In this section,
we presented the distilled images for the CIFAR10 dataset
generated by IPC 50 using three distinct initialization meth-
ods: Random, K-Center [22, 5], and Gaussian noise. Figure
13 illustrates the learned representations of the synthesis
images produced using each initialization strategy. We ob-
served a striking resemblance between the distilled images
obtained through Random and K-Center initialization, which
further confirms the results presented in the main paper. In
contrast, the images generated using Gaussian noise initial-
ization have noticeable differences in comparison to others,
but they have still been learned effectively, and they con-
tain crucial information for each class. In summary, these
qualitative observations provide additional evidence that our
model is robust enough to handle variations in initialization
conditions.

More distilled image visualization. We provide ad-
ditional visualizations of the distilled images for all five
datasets used in this work, namely CIFAR10 (Figures 14,
15), CIFAR100 (Figures 16, 17), TinyImageNet (Figure 18),
ImageNet-1K (Figure 19), ImageNette (Figure 20), Image-
Woof (Figure 21), and ImageSquawk (Figure 22).



(a) ConvNet

(b) AlexNet

(c) VGG-11

Figure 10: Learned synthetic images with different model architectures on the CIFAR10 dataset with IPC 50.



(a) LMMD (b) LSAM

(c) Feature Map Transfer Loss (d) DataDAM

Figure 11: Learned synthetic images with different loss functions on the CIFAR10 dataset with IPC 10.



(a) Last layer (LMMD) (b) Layer 1 and Last Layer (c) Layer 2 and Last Layer

(d) Layer 1 and Layer 2 (LSAM) (e) All layers (DataDAM)

Figure 12: Learned synthetic images with different matching layers on the CIFAR10 dataset with IPC 10.



(a) Random Initialization

(b) K-Center Initialization

(c) Gaussian noise Initialization

Figure 13: Learned synthetic images with different initialization strategies on the CIFAR10 dataset with IPC 50.



Figure 14: Distilled Image Visualization: CIFAR10 dataset with IPC 10.



Figure 15: Distilled Image Visualization: CIFAR10 dataset with IPC 50.



Figure 16: Distilled Image Visualization: CIFAR100 dataset with IPC 10.



Figure 17: Distilled Image Visualization: CIFAR100 dataset with IPC 50 (10 randomly selected images for each class).



Figure 18: Distilled Image Visualization: TinyImageNet dataset with IPC 1.



Figure 19: Distilled Image Visualization: ImageNet-1K dataset with IPC 1.



Figure 20: Distilled Image Visualization: ImageNette dataset with IPC 10.



Figure 21: Distilled Image Visualization: ImageWoof dataset with IPC 10.



Figure 22: Distilled Image Visualization: ImageSquawk dataset with IPC 10.



References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan.

Large scale gan training for high fidelity natural image
synthesis. In International Conference on Learning
Representations, 2019. 2

[2] George Cazenavette, Tongzhou Wang, Antonio Tor-
ralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distil-
lation by matching training trajectories. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4750–4759, 2022. 1, 2, 5

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V Le. Autoaugment: Learn-
ing augmentation policies from data. arXiv preprint
arXiv:1805.09501, 2018. 4

[4] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 702–703,
2020. 4

[5] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh.
Dc-bench: Dataset condensation benchmark. In Thirty-
sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track. 4, 6, 8

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009. 1

[7] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending
the scope of reproducible neural architecture search. In
International Conference on Learning Representations,
2020. 6

[8] Spyros Gidaris and Nikos Komodakis. Dynamic few-
shot visual learning without forgetting. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 4367–4375, 2018. 2, 6

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
networks. Communications of the ACM, 63(11):139–
144, 2020. 2

[10] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch,
Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning
Research, 13(1):723–773, 2012. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
6

[12] J Howard. Imagenette: A smaller subset of 10 eas-
ily classified classes from imagenet, and a little more
french, 2019. 1, 2

[13] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013. 2

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009. 1

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60(6):84–90, 2017. 6

[16] Ya Le and Xuan Yang. Tiny imagenet visual recogni-
tion challenge. CS 231N, 7(7):3, 2015. 1

[17] Yujia Li, Kevin Swersky, and Rich Zemel. Generative
moment matching networks. In International confer-
ence on machine learning, pages 1718–1727. PMLR,
2015. 2

[18] Mehdi Mirza and Simon Osindero. Conditional gener-
ative adversarial nets. arXiv preprint arXiv:1411.1784,
2014. 2

[19] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee.
Dataset meta-learning from kernel-ridge regression. In
International Conference on Learning Representations,
2021. 2, 3

[20] Timothy Nguyen, Roman Novak, Lechao Xiao, and
Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. Advances in Neural Informa-
tion Processing Systems, 34:5186–5198, 2021. 2

[21] Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and
Zhuowen Tu. Dual contradistinctive generative autoen-
coder. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
823–832, 2021. 2

[22] Ozan Sener and Silvio Savarese. Active learning for
convolutional neural networks: A core-set approach. In
International Conference on Learning Representations,
2018. 8

[23] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. 6

[24] Laurens Van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning
research, 9(11), 2008. 6

[25] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo
Yang, Shuo Wang, Guan Huang, Hakan Bilen, Xinchao
Wang, and Yang You. Cafe: Learning to condense
dataset by aligning features. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12196–12205, 2022. 6



[26] Bo Zhao and Hakan Bilen. Dataset condensation with
differentiable siamese augmentation. In International
Conference on Machine Learning, pages 12674–12685.
PMLR, 2021. 1, 2, 3, 4, 5, 6

[27] Bo Zhao and Hakan Bilen. Dataset condensation with
distribution matching. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 6514–6523, 2023. 1, 2, 5, 6

[28] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen.
Dataset condensation with gradient matching. In Ninth
International Conference on Learning Representations
2021, 2021. 5, 6

[29] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba.
Dataset distillation using neural feature regression. In
Advances in Neural Information Processing Systems,
2022. 1


