
Appendix
A. Implementation Details

Code is provided in the supplementary materials and will
be open-sourced.

Training and evaluation datasets.

Video datasets. DAVIS17 [48] is designed for video ob-
ject segmentation, comprising 150 videos, with 60 allo-
cated for training, 30 for validation, and 60 for testing.
Only the first frames of the test set have ground truth fore-
ground masks, so the validation set is used for evaluation.
YTVOS [64] is another dataset for video object segmenta-
tion and is significantly larger than DAVIS17. It consists of
4,453 videos that are annotated with 65 object categories.
As with DAVIS17, ground truth masks are only available
for the first frames of the test and validation sets, and there-
fore, a fixed 20% of the training set is randomly sampled
for the evaluation phase, details are provided in the supple-
mentary material. Additionally, meta information is utilized
to ensure objects in the same category have the same class
id throughout the dataset for semantic, category-level as-
sessments. Figure 4 shows the distribution of objects in
YTVOS.

Image datasets. Pascal VOC 2012 [16] is an object
recognition dataset with 20 object categories and one back-
ground class. It includes pixel-level segmentation, bound-
ing box, and object class annotations for each image, and
has been extensively used as a benchmark for object detec-
tion, semantic segmentation, and classification tasks. The
dataset is split into three subsets, with 1,464 images allo-
cated for training, 1,449 for validation, and a private test-
ing set. As the dataset has been commonly used as a main
reference for recent works in dense self-supervised image
segmentation [74, 57, 61], we also use its validation set as
one of the evaluation datasets.

Model training. We use batches of size 128 on 1 NVIDIA
GeForce RTX 3090, and the optimizer is AdamW [42] with
learning rate equal to 1e-4 for the projection head and the
backbone’s learning rate is 1e-5. We freeze the backbone
model except for the last two blocks for fine-tuning. Our
model is implemented in torch [47]. We use Faiss [33] for
K-Means clustering. We chose to train a ViT-Small [15] im-
age because it has roughly the same number of parameters
as a ResNet-50 (21M vs. 23M). The projection head learn-
ing rate is 1e-4 and the backbone’s learning rate is 1e-5.
The projection head consists of three linear layers with hid-
den dimensionality of 2048 and Gaussian error linear units

Figure 4: The distribution of classes in YTVOS. Some of
the more dominant classes are labeled.

# mm : t o r c h .mm
# exp : t o r c h . exp
# bmm : t o r c h .bmm
# Reshape : In − p l a c e o p e r a t i o n t o change t h e

i n p u t shape
# Normal i ze : t o r c h . Normal ize
# F [ i ] : Shows t h e i t h f e a t u r e map
# C−Map [ i ] : Shows t h e i t h c l u s t e r map

p r e v f e a t = [ ] # ( nmb− c o n t e x t , dim , h*w)
prev maps = [ ]
For i i n r a n g e (N−1) :

p r e v f e a t . append ( F [ i ] )
p rev maps . append (C−Map[ i ] )

s r c f e a t = S t a c k ( p r e v f e a t )
t r g t f e a t = F [N] # ( 1 , dim , h*w)
t r g t f e a t = Normal i ze ( t r g t f e a t , dim =1 , p =2)
s r c f e a t = Normal i ze ( s r c f e a t , dim =1 , p =2)
a f f = exp (bmm( t r g t f e a t , s r c f e a t ) / 0 . 1 )
Reshape ( a f f , ( nmb− c o n t e x t * h*w, h*w) )
a f f = a f f / sum ( a f f , keepdim=True , a x i s =0)
a f f = mask− n e i g h b o r h o o d ( a f f )
p rev maps = S t a c k ( prev maps ) # ( nmb− c o n t e x t , C ,

h , w)
Reshape ( prev maps , (C , nmb− c o n t e x t *h*w) )
t r g t c m a p = mm( prev maps , a f f )

Listing 1: FF component. The pytorch implementation of
FF is shown.

as activation function [26]. We set the temperature to 0.1
and use Adam as an optimizer with a cosine weight decay
schedule. The augmentations used are random color-jitter,
Gaussian blur, grayscale, and random cropping.

Evaluation details. Since we evaluate the pre-GAP
layer4 features or the spatial tokens, their output resolution
does not match the mask resolution. To fix that, we bilin-
early interpolate before applying the linear head; or directly
interpolate the clustering results by nearest neighbor up-
sampling. For a fair comparison between ResNets and ViTs,



Algorithm 1 Evaluation Pipeline Pseudocode. M is the
model, C is the clustering algorithm, MA is the matching
algorithm by which the clusters are scored, and GT is the
given ground-truth.

1: input = input.reshape(bs * n f , c, h, w)
2: Fb = M(input)
3: Fb = F.reshape(bs, n f , num-patch, dim)
4: score list = []
5: if Per frame then
6: for Fc In Fb do
7: for Ff In Fc do
8: C Map = C(Ff )
9: score = MA(C Map,GTf )

10: score list.append(score)
11: end for
12: end for
13: else if Per clip then
14: for Fc In Fall do
15: C Maps = C(Fc)
16: score = MA(C Maps,GTc)
17: score list.append(score)
18: end for
19: else if Per dataset then
20: C Maps = C(Fb)
21: score = MA(C Maps,GTb)
22: score list.append(score)
23: end if
24: return(score list.mean())

we use dilated convolution in the last bottleneck layer of the
ResNet such that the spatial resolution of both network ar-
chitectures match (28x28 for 448x448 input images). All
overclustering results were computed using downsampled
100x100 masks to speed up the Hungarian matching as we
found that the results do not differ from using full-resolution
masks.

B. Evaluation Protocol for Unsupervised Video
Object Semantic Segmentation

Here, we provide details for the evaluation protocols for
unsupervised video multi-label object segmentation. To be
consistent with the image domain [74], a clustering algo-
rithm is applied to the features extracted from frozen en-
coders to craft dense assignment maps of pseudo-labels.
To produce scores, based on each evaluation protocol, the
crafted maps are matched with the ground truth, and their
MIOU is reported. Suppose the matching algorithm is spec-
ified by M(labels, ground-truth), clustering algorithm by K,
dataset features by F ∈ RN×n f×d×h×w, where N , n f ,
d, h, and w stand for dataset size, number of frames per
clip, feature dimension, and feature spatial resolutions, re-

spectively. we introduce three evaluation protocols that are
specific to the video domain.

Per frame evaluation (F).

Fframe[i, j] = F [i, j] (10)

score =
1

N × n f

N∑
i=1

n f∑
j=1

MIOU(M(K(Fframe[i, j]),GT[i, j]))

(11)

this measures a basic alignment of a given feature map with
the ground-truth.

Per clip evaluation (C).

Fclip[i] = (F [i, 1], · · · , F [i, nf ]) (12)

score =
1

N

N∑
i=1

MIOU(M(K(Fclip[i]),GT[i])) (13)

This evaluation tests whether the assigned pseudo-labels re-
main consistent over time for each clip.

Per dataset evaluation (D).

Fdataset = (F [1, 1], · · · , F [N,n f ]) (14)
score = MIOU(M(K(Fdataset),GT)) (15)

This evaluation measures the most difficult ability of gen-
erating not only temporally stable features of objects across
time but across videos.

C. Additional Experiments
To provide a complete evaluation of our method com-

pared to the baseline on Pascal VOC [16], we show the per-
class performance in Figure 6. As the figure shows, we
improve the class ”person” by more than 40%, which could
be beacuse of the high number of such objects in YTVOS
as Figure 4 shows. The classes ”cat” and ”dog” also show a
significant improvement since they are of the further domi-
nant classes after ”person”.

Unsupervised video object segmentation and tracking.
Although such methods are designed for salient object de-
tection or unsupervised mask propagation, and not specif-
ically for unsupervised semantic segmentation, we evalu-
ate their performance on our proposed evaluation protocols
to highlight their strengths and limitations. The results are
shown in Table 9. As it is shown, TIMET outperforms
such methods on all the evaluation protocols by a margin
between 12% to 24%. Not being specifically designed for
semantic segmentation tasks may explain their inferior per-
formance.



Method F C D
DUL [1] 28.2 27.4 2.4
Motion Grp [66] 32.0 30.7 1.5
TIMET (ours) 56.5 55.5 14.1

Table 9: Comparison to video unsupervised object seg-
mentation methods. Evaluation on DAVIS with K=GT.

Comparing to unsupervised video object segmentation
and tracking. Although such methods are designed for
salient object detection or unsupervised mask propagation,
and not specifically for unsupervised semantic segmenta-
tion, we evaluate their performance on our proposed bench-
mark to highlight their strengths and limitations. We con-
ducted a comprehensive comparison of our method with
state-of-the-art techniques, such as Motion-Grp [66] and
DUL [1], which aim to learn unsupervised features for prop-
agating a given first frame’s mask in test time or separating
foreground from background using motion flows, as pre-
viously mentioned. To ensure consistency, we trained and
tested all models on DAVIS, a widely used benchmark. Re-
sults in Table 9 demonstrate that our method outperforms
these techniques across all reported metrics. It is worth not-
ing that these methods were not specifically designed for
semantic segmentation tasks, which may explain their infe-
rior performance.

Analyzing per class results. In Figure 6 and 5 the per
class improvements on Pascal VOC are reported. As the
figures show, for the classes that make over 95% of the num-
ber of objects existing in YTVOS, the performance almost
always improves considerably. The reason that the class
”bird” does not behave the same as the others might be due
to the small size of this object in YTVOS.

Component Contributions. In Table 10, we show the ef-
fect of using different components on the Pascal clustering
results. As it is shown, TIMETimproves DINO [9] by 12%.
The results are improved by another 18% after applying
CBFE [74] to the features, showing high overclustering per-
formance on this dataset. The number of clusters used for
CBFE is 300 for this experiment.

Comparing different propagators. Complementary to
the previous ablations, in Table 11, we conduct a detailed
study on the performance of forwarding foreground masks
using various temporal intervals and comparing the use of
optical flow [53] with our Feature-Forwarder (FF). We find
that across all values of δt, FF outperforms flow by a large
margin of +10% or more. This superiority has the added
benefit of our FF module not having to expensively com-

MIOU

K=150 48.2
DINO 4.6
+TimeT 16.5
+CBFE 34.5

Table 10: Component contributions. We show the gains
that each individual component brings for Pascal VOC seg-
mentation and K=21.

pute flow but instead reusing the activations that are pro-
cessed for the clustering step.

δt GT0 Flow FF

0.1s 26.4 29.8 39.8
0.2s 25.7 28.5 40.3
0.4s 24.5 26.1 40.1
0.8s 21.8 22.7 37.5

Table 11: Comparing FF with other forwarding methods.
The numbers of reported on DAVIS validation set.

D. Additional Visualisations
Clustering with K=GT. In Figure 8, we show some qual-
itative results on Pascal VOC when K is set to the number of
ground-truth objects, similar to Figure 3 in the paper. While
the method is trained on YTVOS with a temporal loss, it ob-
tains strong performances on an image segmentation dataset
yielding high class consistencies (indicated by the segmen-
tation colors) and tight borders.

We also have provided further qualitative results with the
same setting on DAVIS and YTVOS in Figure 7 and the at-
tached HTML file. As the videos show, we get considerably
more consistent and structured visualizations compared to
DINO [9] and Leopart [74]. This further supports the ef-
fectiveness of temporal fine-tuning compared to the models
solely trained on images.

Overclustering results by merging 500 clusters using
ground-truth labels. In the attached HTML file, we show
the visualizations of our method on Pascal in the overslu-
tering setting as well. As depicted, objects from different
classes can be segmented precisely with different colors,
showing that the learned patch features are semantic.



Figure 5: The per class performance of DINO and TIMET is shown for the clustering experiment with K=GT. Cluster-based
foreground extraction [74] has been applied to both methods. As it is seen, this paper almost always improves the baseline
performance for this evaluation as well. Pascal VOC is used in this experiment.

Figure 6: The per class performance of DINO and TIMET is shown for the overclustering experiment with K=500. As it
is seen, this paper consistently improves the baseline performance. The numbers for the dominant shared classes between
YTVOS and Pascal VOC are shown by the color red.
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Figure 7: TIMET segmentations on DAVIS with K=GT. Here, we compare the performance of DINO, STEGO, and
TIMET on the task of unsupervised video semantic segmentations. TIMET has a clear advantage over both DINO and
STEGO in terms of providing tight segmentation boundaries and specifying different objects with different category IDs.
Different colors in the figure specify different IDs.



Figure 8: TIMET segmentations on Pascal VOC with K=21. We use CBFE [74] to focus on the foreground objects. While
the method is trained on YTVOS with a temporal loss, it obtains strong performances on an image segmentation dataset
yielding high class consistencies (indicated by the segmentation colors) and tight borders.
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Figure 9: DINO’s features jump around across time, leading
to inconsistent cluster maps. Our proposed TIMET-trained
model observes more temporal consistency.


