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Abstract

We provide supplementary material in support of the
main paper. We organize the content as follows:

• In Sec. 1, we report the implementation details of our
experiments, the additional experimental evaluations
on Synth4D-nuScenes→Real, and an additional abla-
tion of LiDOG.

• In Sec. 2, we report and discuss qualitative results
comparing the performance of LiDOG with all the
compared baselines and ground truth annotations.

1. Experimental Evaluation

We provide the implementation details of our experi-
ments in Sec. 1.1. In Sec. 1.2, we complete the set of exper-
iments of the main paper and report the experimental results
obtained on Synth4D-nuScenes→Real. In Sec. 1.3, we fur-
ther ablate how the input resolution affects LiDOG perfor-
mance.

1.1. Implementation details

We implement our method and all the baselines by us-
ing the PyTorch framework. We use MinkowskiNet [2] as
a sparse convolutional backbone in all our experiments and
train until convergence with voxel size 0.05m, total batch
size of 16, learning rate 0.01 and ADAM optimizer [3]. In
the experiments we use random rotation, scaling, and down-
sampling for better convergence of baselines and LiDOG.
We set rotation bounds between [−π/2, π/2], scaling be-
tween [0.95, 1.05], and perform random downsampling for
80% of the patch points. We set projection bounds B3D

based on the input resolution. We set bx and bz to 50m
in the denser source domains of Synth4D-KITTI and Se-
manticKITTI and bx and bz to 30m in the sparser domains

of Synth4D-nuScenes and nuScenes. Quantization parame-
ters xq and zq are computed based on the spatial bounds in
order to obtain BEV labels of 168x168 pixels. For down-
sampling dense features, we use a max pooling layer with
window size 5, stride 3, and padding 1. The LiDOG 2D
decoder is implemented with a series of three 2D convo-
lutional layers interleaved by batch normalization layers.
ReLU activation function is used on all the layers while
softmax activation is applied on the last layer.

1.2. Synth4D-nuScenes→Real

In Tab. 1, we report the results for single-source
Synth4D-nuScenes→Real. We observe a 41.82 mIoU
gap (SemanticKITTI) between the source (19.71
mIoU) and target (61.53 mIoU) models on Synth4D-
nuScenes→SemanticKITTI and a 23.92 mIoU gap
(nuScenes), between source (24.57 mIoU) and tar-
get (48.49 mIoU) on Synth4D-nuScenes→nuScenes.
Among the baselines, augmentation-based methods are
the most effective with Mix3D achieving 31.64 mIoU
(SemanticKITTI) and 31.23 mIoU (nuScenes). LiDOG
reduces the domain gap between source and target models
and outperforms all the compared baselines in all the
scenarios. For example, on Synth4D-nuScenes→Real
(Tab. 1), we obtain 34.79 mIoU, a +15.08 improvement
over the source model.

1.3. BEV resolution

We study the impact of BEV image resolution on the
LiDOG performance. We adapt the feature resolution by
applying several pooling steps and the label resolution via
the quantization step size. In Fig. 1, we report the results
obtained on Synth4D-KITTI→Real, when using BEV fea-
tures with 50% and 75% of the initial resolution (100%).
Interestingly, on Synth4D-KITTI→nuScenes we observe a
slight improvement with 75% resolution. However, we ob-
tain consistently top performance on both domains with the
full resolution (100%).
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Table 1: Synth4D-nuScenes→Real, single-source. We train our model on Synth4D-nuScenes and test on SemanticKITTI
and nuScenes. LiDOG improves over the source models by +15.08 mIoU on SemanticKITTI and by +9.21 mIoU on
nuScenes. LiDOG outperforms all the compared baselines. Lower bound (red): a model trained n the source domain without
the help of DG techniques. Upper bound (blue): a model directly trained on target data.
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Lower bound Source 14.54 2.41 32.78 14.86 6.4 30.89 36.07 19.71

Aug
Mix3D [5] 37.38 7.26 56.90 21.06 10.60 34.46 53.79 31.64

PointCutMix [9] 27.51 4.32 56.04 21.37 7.02 24.38 45.35 26.57
CoSMix [7] 16.13 6.42 39.71 14.63 13.04 23.54 30.57 20.58

2D DG
IBN [6] 47.15 7.81 50.74 4.51 15.20 29.53 51.35 29.47

RobustNet [1] 21.19 8.56 44.46 10.80 15.06 11.95 30.59 20.37

3D UDA
SN [8] 11.56 2.38 37.50 10.86 5.19 20.70 39.23 18.20

RayCast [4] 28,89 6.34 53.59 12.94 15.86 21.74 41.85 25.89
3D DG Ours 55.08 11.42 59.48 26.10 2.78 34.83 53.82 34.79

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53
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Lower bound Source 17.73 8.94 36.53 7.28 5.78 52.13 43.62 24.57

Aug
Mix3D [5] 33.83 17.85 47.74 8.93 9.71 56.35 44.18 31.23

PointCutMix [9] 21.51 13.12 53.72 8.86 8.45 54.83 48.81 29.90
CoSMix [7] 22.00 15.43 57.40 8.86 9.08 56.24 47.16 30.88

2D DG
IBN [6] 23.07 14.13 44.96 7.10 9.83 53.70 49.49 28.90

RobustNet [1] 21.59 12.29 48.52 8.14 6.22 51.33 47.68 27.97

3D UDA
SN [8] 24.71 8.45 5.,08 5.66 11.04 47.00 39.05 26.57

RayCast [4] 19.65 12.24 58.08 7.58 9.71 46.43 41.37 27.86
3D DG Ours (LiDOG) 26.79 18.68 63.28 15.81 6.57 58.8 46.5 33.78

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49
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Figure 1: BEV image resolution: We compare the per-
formance while changing the BEV image resolution on Se-
manticKITTI (left) and nuScenes (right), Source: Synth4D-
KITTI

2. Qualitative evaluation

We report additional qualitative results for each
baseline and in all the studied generalization direc-
tions. In Fig. 2-4 we show qualitative results in the
Synth→Real setting: Synth4D-kitti→Real (Fig. 2),
Synth4D-nuScenes→Real (Fig. 3) and Synth4D-
kitti+Synth4D-nuScenes→Real (Fig. 4). In Fig. 5-6 we
show qualitative results in the SemanticKITTI→nuScenes
and nuScenes→SemanticKITTI directions, respectively.
Source predictions are often incorrect and spatially incon-
sistent. Baselines consistently improve over the source

model performance. LiDOG achieves the overall best
performance with improved and more precise predictions.
This can be seen in all the reported results, both synth→real
and real→real.
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Figure 2: Qualitative results. Top: Synth4D-kitti→SemanticKITTI, bottom: Synth4D-kitti→nuScenes. LiDOG improves
over source and baselines, e.g., we observe the improvements of road in SemanticKITTI and vehicle in nuScenes.
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Figure 3: Qualitative results. Left: Synth4D-nuScenes→SemanticKITTI, right: Synth4D-nuScenes→nuScenes. LiDOG
improves over source and baselines, e.g., we observe the improvements of road in SemanticKITTI and manmade in nuScenes.
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Figure 4: Qualitative results. Top: Synth4D-kitti+Synth4D-nuScenes→SemanticKITTI, bottom: Synth4D-kitti+Synth4D-
nuScenes→nuScenes. LiDOG improves over source and baselines, e.g., we observe the improvements of vegetation in
SemanticKITTI and road in nuScenes.
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Figure 5: Qualitative results. Top: SemanticKITTI→nuScenes. LiDOG improves over source and baselines, e.g., we
observe the improvements in terrain, road, and manmade.
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Figure 6: Qualitative results. Top: nuScenes→SemanticKITTI. LiDOG improves over source and baselines, e.g., we
observe the improvements in sidewalk and road.


