
CDFSL-V: Cross-Domain Few-Shot Learning for Videos (Supplementary)

1. Overview
In this Supplementary, we report additional results for

our proposed method. In particular, this Supplementary in-
cludes the following sections: Section 2 provides extra re-
sults for our approach, when we utilize Kinetics-100 and
UCF101 as the source datasets. In Section 3, we report
results with different numbers of support samples which
complements our results reported in the main text. Next,
we provide results on image datasets for cross-domain few-
shot learning in Section 4. Finally, in Section 5, we show a
quantitative comparison of our method against the previous
state-of-the-art.

2. Varying Source Datasets
We repeat the main experiments using Kinetics-100 and

UCF101 as the source datasets. In comparison to Kinet-
ics, UCF101 has higher scene bias [1] and temporally sim-
pler actions. In this experiment, We compare our method
to the other CDFSL methods with a reduced amount of
classes in the source dataset. The number of source classes
changes to 61 and 101 in this experiment, for Kinetics-100
and UCF101, respectively. We also evaluate how effec-
tively features learned from UCF101 transfer to the target
domains with different actions in nature. We follow the
same experimental setup as main experiments.

The main result is that we similarly outperform
STARTUP and Dynamic Distillation. We achieve a 2.1%
improvement on average over Dynamic Distillation with
Kinetics-100 as the source dataset, shown in Table 1. When
using UCF101 as the source dataset, as in Table 2, We have
an increase in performance over Dynamic Distillation of
4.8% on HMDB51 and 1.9% on RareACT. In summary, our
experiments in this experimental setup, re-validate the ef-
fectiveness of our method compared to the other CDFSL
methods in the video setting.

Method, Source Dataset: Kinetics-100 UCF101 HMDB51 SSV2 Diving48 RareAct Average
Random Initialization 23.83 16.02 12.08 15.37 16.57 16.78
STARTUP 32.20 24.97 15.16 14.55 31.77 23.73
Dynamic Distillation 34.10 25.99 16.00 16.24 31.20 24.71
Ours 36.53 29.80 17.21 16.37 33.91 26.82

Table 1: 5-way 5-shot Accuracy using Kinetics-100 as the
source dataset

Method, Source Dataset: UCF101 HMDB51 DIVING48 RareAct Average
Random Initialization 21.69 14.48 26.98 21.05
STARTUP 23.56 14.84 31.31 23.24
Dynamic Distillation 24.06 16.15 32.00 24.07
Ours 28.86 16.07 33.91 26.82

Table 2: 5-way 5-shot Accuracy using UCF101 as the
source dataset

3. Varying k for Few-Shot Classification

In this section, we include the results for different sizes
of target support sets. This is complementary to the
Kinetics-100 Experiment of the previous section, reported
in Table 1. We follow the same experimental setup for train-
ing across all methods, only changing the number of k shots
for the few-shot evaluation. Table 3 shows the performance
of different approaches in 1-shot evaluation. We observe
that even in this challenging setup our proposed method
outperforms all the other methods with a noticeable mar-
gin (> 1%). We observe an even bigger improvement when
we increase the number of support samples to 20. We report
the results for this evaluation in Table 4 and notice that our
proposed method outperforms the previous state-of-the-art
method, Dynamic Distillation [7], by a significant margin.
This further validates the effectiveness of our method and
shows that our method is more effective with a higher num-
ber of support samples.

4. Cross-domain Few-shot Learning on Image
data

In addition to improving performance in the CDFSL-
V problem setting, we demonstrate the effectiveness of
our method on the Cross-Domain Few-Shot Learning prob-
lem for images. For these experiments we follow the BS-
CDFSL [3] benchmark for CDFSL. The benchmark uses the
100-class miniImageNet dataset as the source dataset. Fol-
lowing [7], for the target datasets, we use CropDisease[8]
– a plant disease dataset with both healthy and sick speci-
mens, EuroSAT[6] – an aerial-view dataset of various land
use and land cover types, and the ISIC Challenge dataset
from 2018[2] – a dermoscopic dataset of various skin le-
sions relating to diseases. In comparison to the source



Method, Source Dataset: Kinetics-100 UCF101 HMDB51 SSV2 Diving48 RareAct Average
Random Initialization 23.83 16.02 12.08 15.37 16.57 16.78
STARTUP 24.48 16.66 14.17 13.13 17.21 17.13
Dynamic Distillation 26.04 17.44 14.96 13.73 19.02 18.24
Ours 27.78 18.59 16.01 14.11 20.06 19.31

Table 3: 5-way 1-shot Accuracy using Kinetics-100 as the source dataset

Method, Source Dataset: Kinetics-100 UCF101 HMDB51 SSV2 Diving48 RareAct Average
Random Initialization 32.33 27.97 15.12 15.83 33.53 24.96
STARTUP 34.02 30.48 17.15 17.30 38.45 27.48
Dynamic Distillation 36.72 33.09 17.56 17.33 39.97 28.93
Ours 39.92 36.89 18.72 17.81 42.51 31.17

Table 4: 5-way 20-shot Accuracy using Kinetics-100 as the source dataset

dataset the target datasets have significantly fewer classes,
with 38, 10, and 5 for CropDisease, EuroSAT, and ISIC,
respecitvely. Despite having the fewest classes, ISIC is
the most difficult dataset in the CDFSL task, having both
high few-shot difficulty and low domain similarity with the
source[9].

Dynamic Distillation[7] normally uses a ResNet[5] as
the backbone for the student encoder. For the following im-
age experiments we compare our method against Dynamic
Distillation using a VitMAE[4] backbone, to provide a fair
comparison by keeping the architectures consistent. We
denote this altered backbone Dynamic Distillation as Dy-
namic Distillation* in Table 5. From the reported results
in Table 5, we notice that our proposed method even out-
performs the previous state-of-the-art methods by a signifi-
cant margin on all three datasets. On average, our proposed
method improves over Dynamic Distillation* by more than
2%. In summary, these results demonstrate that our pro-
posed method is effective in both image and video data.

5. Qualitative Analysis
In this section we show some video samples from

SSV2 and RareAct datasets that our method classifies cor-
rectly, while Dynamic Distillation, the runner-up perform-
ing method, does not. Specifically, Fig.1 shows an exam-
ple where Dynamic Distillation [7] confuses pouring a liq-
uid with spreading air from SSV2. Fig. 2 shows another
video where Dynamic Distillation [7] misclassifies fold-
ing with lifting up. Fig. 3 shows a video from RareAct
dataset where our method successfully recognizes hammer-
ing a can, while Dynamic Distillation [7] misclassifies it
as peeling a corn. Finally, Fig. 4 shows a video from
RareAct where Dynamic Distillation [7] misclassifies cut-
ting a phone with dropping a fridge.



Method, Source Dataset: miniImageNet CropDisease EuroSAT ISIC Average
Random Initialization 58.37 52.90 32.69 47.99
Supervised Pretraining 84.48 73.92 45.06 67.82
Dynamic Distillation* 86.68 77.11 47.60 70.46
Ours 88.81 81.42 47.80 72.68

Table 5: 5-way 5-shot Accuracy using miniImageNet as the source dataset

Figure 1: Qualitative results. Dataset: SSV2. Ground-Truth Label: Pouring [something] into [something] until it overflows.
Dynamic Distillation [7] Output: Pretending to spread air onto [something]. Ours: Pouring [something] into [something]
until it overflows.

Figure 2: Qualitative results. Dataset: SSV2. Ground-Truth Label: Folding [something]. Dynamic Distillation [7] Output:
Lifting up one end of [something] without letting it drop down. Ours: Folding [something].

Figure 3: Qualitative results. Dataset: RareAct. Ground-Truth Label: Hammer Can. Dynamic Distillation [7] Output: Peel
Corn. Ours: Hammer Can.

Figure 4: Qualitative results. Dataset: RareAct. Ground-Truth Label: Cut Phone. Dynamic Distillation [7] Output: Drop
Fridge. Ours: Cut Phone.
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