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1. Supplementary material – Overview
This supplementary material is organized as follows.
• We explain our sparsification algorithm, which is used

to eliminate redundant scenes in SemanticKITTI [2]
(Section 2);

• We provide further details regarding model training for
comparing active learning (AL) methods (Section 3);

• We present all the quantative results in a table obtained
from all AL methods on S3DIS and SemanticKITTI
(Section 4);

• Finally, we report the remaining results of our ablation
experiments; (i) component analyses results obtained
from AL methods rand, MC-Drop, S-conf, S-margin,
S-ent and SegEnt, (ii) results obtained from additional
2D (MoCo-v3) and 3D (DepthContrast, SegContrast,
ALSO) features for all AL methods (Section 5);

2. Sparsification of SemanticKITTI
SemanticKITTI consists of sequences of frames sampled

at 10 Hz. Consequently, there is a high similarity between
successive frames, which are thus somehow redundant. To
address this issue and improve scalability, we use a greedy
algorithm to sparsify the SemanticKITTI dataset.

For each sequence, we begin with the first frame, use
it as reference, and calculate its similarity with subsequent
frames. We then eliminate any subsequent frame whose
similarity with the first frame is above a threshold. The first
subsequent frame falling below the threshold is then itself
used as a new reference, and the process continues for all
frames in the sequence. With this simple sparsification, we
increase the scalability of the dataset and reduce computa-
tional requirements for downstream processing.

The similarities are computed again using global DINO
features for each frame. We set a threshold of 0.75 on the
cosine similarity. Our algorithm reduces the size of Se-
manticKITTI by 95%.

3. Implementation and experiment details
Our AL seeding method (SeedAL) is implemented us-

ing PyTorch [5]. We run S3DIS [1] experiments on a sin-

gle V100 GPU with a batch size of 4. We perform the
training of segmentation networks for CoreSet, S-conf, S-
margin, S-ent, MC-drop and SegEnt on SemanticKITTI us-
ing 2 A100 GPUs with a batch size of 32. The training
of networks when using ReDAL, a region-based method, is
about 5 times longer than when using scene-based methods
because more point clouds need to be processed.
Running time includes: using a pretrained model to create
the features (90 ms/image on a V100 GPU), clustering and
sorting candidates (negligible time), and extracting the best
ones within the budget by linear optimization (< 1 min for
S3DIS, < 5 min for SemanticKITTI).

4. Quantitative Results
To make it easier to compare performance quantitatively

across papers, we report in Table 1 the detailed quantita-
tive results obtained from all AL methods on S3DIS and
SemanticKITTI datasets. We compare our method SeedAL
to the proposed baselines, random sets and also the random
seed used in ReDAL’s paper [8] to produce results, noted
ReDAL’s seed in the table.

5. Ablation experiments
Figure 1 shows the remaining results of our ablation ex-

periments obtained from AL methods rand, MC-Drop, S-
conf, S-margin, S-ent and SegEnt. These results corrobo-
rate what is presented in Figure 7 and Section 5.4 of the
paper, namely that: (a) intra-scene diversity is particularly
relevant, compared intra-scene similarity; (b) clustering fea-
tures leads to better AL seeds than just exploiting intra-
scene diversity; (c) inter-scene diversity leads to better AL
seeds than inter-scene similarity; (d) the proposed combina-
tion of intra- and inter-scene diversity (i.e., SeedAL) gener-
ally performs on par or better than both intra- or inter-scene
diversity, independently.

As a complement to Figure 8 in the paper, Figure 2 and
Figure 3 present the results for all active learning methods
with different 2D and 3D self-supervised features on S3DIS
and SemanticKITTI, respectively. We do not provide results
with ReDAL on SemanticKITTI due to its massive training
cost.



S3DIS SemanticKITTI
AL AL seeding (% of labeled points) (% of labeled points)
method method 3 5 7 9 1 2 3 4

rand

random 30.1 35.3 38.5 40.4 46.1 50.8 53.9 55.9
std dev 5.5 3.7 2.9 2.9 3.5 1.0 1.5 1.4

KMcentroid 33.5 36.9 39.8 40.9 41.0 48.9 53.6 54.7
KMfurthest 36.2 36.8 40.9 42.8 39.8 51.9 53.8 56.7
ReDAL’s seed 26.1 30.0 35.9 39.8 48.0 51.9 54.6 56.6
SeedAL 38.0 38.7 41.2 42.1 51.3 55.0 56.6 58.0

S-conf [7]

random 30.3 33.1 35.6 37.9 46.1 48.2 49.9 52.6
std dev 5.8 3.5 3.0 3.7 3.7 4.2 3.8 3.2

KMcentroid 33.4 33.5 36.7 38.2 41.4 48.6 50.1 53.4
KMfurthest 36.5 36.6 39.2 41.1 39.9 46.9 50.4 52.5
ReDAL’s seed 26.1 26.6 29.3 34.6 47.9 50.2 51.7 54.2
SeedAL 37.5 38.5 40.6 41.1 51.7 53.7 54.4 56.6

S-margin [7]

random 30.1 33.1 34.9 36.9 45.6 48.3 50.1 51.6
std dev 5.6 4.1 4.0 3.7 3.3 2.6 2.4 2.4

KMcentroid 33.6 36.1 36.5 39.1 40.5 46.6 49.1 50.4
KMfurthest 36.8 38.7 38.5 41.2 40.5 45.5 48.5 50.3
ReDAL’s seed 26.1 28.3 35.5 39.9 46.2 50.0 50.3 50.9
SeedAL 38.6 39.4 40.1 41.3 52.2 51.8 54.7 56.2

S-ent [7]

random 29.6 32.3 34.9 37.2 45.7 47.9 49.8 52.1
std dev 5.6 5.2 4.0 3.1 3.2 4.2 3.7 3.3

KMcentroid 33.2 34.1 36.5 41.3 41.8 46.6 50.1 53.1
KMfurthest 35.8 35.7 38.0 41.1 39.8 47.6 49.5 51.2
ReDAL’s seed 27.4 29.9 32.9 38.3 47.4 50.0 50.1 51.8
SeedAL 37.8 39.0 40.7 41.9 52.4 53.0 55.2 56.8

CoreSet [6]

random 30.1 33.6 36.2 37.5 45.3 49.5 53.5 55.1
std dev 5.5 4.2 3.4 2 3.7 2.6 1.4 1.0

KMcentroid 33.5 37.2 36.6 39.2 40.6 46.6 52.5 54.5
KMfurthest 36.4 39.3 41.1 39.7 40.1 46.4 50.2 54.7
ReDAL’s seed 26.3 30.2 32.3 34.9 46.4 49.5 52.1 54.1
SeedAL 37.7 40.1 40.9 41.9 52.1 53.8 55.2 56.9

MC-Drop [3]

random 30.4 32.9 35.3 37.3 46.4 48.2 50.3 52.1
std dev 5.5 4.3 3.0 3.3 3.3 5.2 4.5 4.4

KMcentroid 33.5 33.6 37.5 39.7 40.9 48.3 50.7 52.3
KMfurthest 37.1 37.4 38.9 42.4 39.4 43.5 49.0 51.7
ReDAL’s seed 26.9 28.9 31.5 32.1 48.6 50.6 52.4 54.2
SeedAL 38.1 39.0 40.3 41.4 50.4 53.4 53.6 55.6

SegEnt [4]

random 30.2 33.6 38.2 39.8 45.4 50.6 52.4 54.2
std dev 5.5 2.5 1.9 2.1 3.8 1.5 0.4 0.8

KMcentroid 33.7 34.3 35.9 38.0 41.2 50.4 52.1 53.9
KMfurthest 35.9 38.2 38.8 40.5 40.1 49.8 51.3 54.0
SeedAL 37.6 39.8 42.1 43.2 51.1 52.4 55.0 55.5

ReDAL [8]

random 30.7 38.6 44.3 49.4 44.9 51.8 55.8 57.9
std dev 5.2 1.0 0.5 0.7 3.2 1.8 0.8 0.6

KMcentroid 32.6 37.6 45.3 48.3 38.5 53.9 55.7 57.2
KMfurthest 35.1 41.5 47.5 51.7 38.3 48.6 57.0 58.6
ReDAL’s seed 24.9 37.5 43.8 45.5 46.1 53.8 56.7 58.4
SeedAL 37.5 42.8 48.6 51.7 50.5 53.9 55.8 58.9

Table 1: Performance (% mIoU) of the AL seeding methods on several AL methods for S3DIS and SemanticKITTI. Noted
‘random’ is the average over three and six random seeds for S3DIS and SemanticKITTI respectively (we also report the
standard deviation “std dev”). “ReDAL’s seed” is the random seed used in the experiments reported in ReDAL’s paper [8].
We report the results for the ReDAL method obtained after our re-training.
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Figure 1: Ablation study. [Complement to Figure 7 in the paper] We evaluate here results obtained with different seeding
strategies. (a) Seeds made of scenes with high intra-diversity (intra-div.) or high intra-similarity (intra-sim.). (b) Seeds
selected with two different intra-diversity metrics:view features (feats.)or computed after clustering the view features (cls.
feat.). (c) Seeds made of scenes with high inter-diversity (inter-div.) or high inter-similarity (inter-sim.). (d) Seeds selected
with SeedAL, considering only inter-diversity (inter-div.) or intra-diversity (intra-div.).
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Figure 2: SeedAL results on S3DIS using features from MoCo-v3 and DINO. Rand is an average over the random seeds.
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Figure 3: SeedAL results on SemanticKITTI using features from DepthContrast, SegContrast, ALSO, MoCo-v3, DINO.
Rand is an average over the random seeds.
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