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Abstract

This supplementary material accompanies the main pa-
per by providing further information for better reproducibil-
ity as well as additional evaluations and qualitative results.
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A. Videos
We provide an introductory video to our paper along with

this document. The video describes the method and the
most important results along with the visualization of the
online reconstruction process of our proposed method com-
pared to NICE-SLAM [8] and Vox-Fusion [7].

B. Method
In the following, we provide more details about our

method, specifically the hyperparameter choices for the dy-
namic resolution strategy and architecture of our exposure
compensation network.

Design Choices Dynamic Resolution Strategy. We em-
pirically set the upper bound for the color gradient mag-
nitude threshold to gu = 0.15 for all evaluated datasets.
Based on the pre-calculated cumulative gradient magni-
tude histograms shown in Figs. B.1a to B.1c (depicting
room 0, freiburg1-desk, and scene0000 00), we
observe that approximately less than 10% of all pixels ex-
ceed the upper threshold. The threshold gu = 0.15 strikes
a good balance between resolving highly textured regions
and model compression. The cumulative histograms in

*Equal contribution.
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(d) Search radius r(u, v).

Figure B.1: Color Gradient Magnitude Histograms and
Search Radius. The cumulative histograms (a-c) show the
percentage of pixels below a certain gradient magnitude. (d)
Search radius r(u, v) as a function of the gradient magni-
tude at pixel (u, v).

Figs. B.1a to B.1c also reveal that the majority of pixels
have close to zero gradient magnitude. We use a lower
bound gl = 0.01 for all datasets. The search radius r(u, v)
as a function of the color gradient magnitude at pixel (u, v)
is shown in Fig. B.1d.

Exposure Network Architecture. For the exposure com-
pensation network Gϕ, we use one hidden layer with 128
neurons followed by a softplus activation. The input latent
vector is 8-dimensional and the output is 12-dimensional,
which is reshaped into a 3×3 affine matrix and a 3×1 trans-
lation vector. The network Gϕ and latent vector are jointly
optimized both during mapping and tracking. The latent
vector is put in shared memory and if the current frame is
used for mapping, the latent vector is first optimized dur-
ing tracking then refined during mapping. We did not ex-
plore other optimization strategies which could potentially
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Dataset
Map Keyframe Map Track Map

Every Every Window Iter. Iter.

Replica [5] 5 20 12 40 300
TUM-RGBD [6] 2 50 10 200 150
ScanNet [1] 5 10 20 100 300

Table C.1: Parameter Configurations on Tested Datasets.
Map Every: how often (in frames) mapping is done. Map
Window: How many keyframes that are sampled to overlap
with the current viewing frustum for mapping. Iter.: Itera-
tions (optimization steps).

improve performance.

C. Implementation Details
We use PyTorch 1.12 and Python 3.10 to implement the

pipeline. Training is done with the Adam optimizer and
the default hyperparameters betas = (0.9, 0.999), eps =
1e-08 and weight decay = 0. The results are gathered us-
ing various Nvidia GPUs, all with a maximum memory of
12 GB. The learning rate for tracking is 0.002 on Replica
and TUM-RGBD and 0.0005 on ScanNet. We use a learn-
ing rate of 0.03 for the initial geometry only optimization
stage and 0.005 during color and geometry optimization
stage. Table C.1 describes other dataset-specific hyperpa-
rameters such as the mapping window size which describes
how many frames (current frame and selected keyframes)
are used during mapping. We also follow [8] and use a sim-
ple keyframe selection strategy which adds frames to the
keyframe database at regular intervals (see also Table C.1).

D. Evaluation Metrics

Mapping. We use the following five metrics to quantify
the reconstruction performance. We compare the ground
truth mesh to the predicted mesh. The F-score is defined as
the harmonic mean between Precision (P) and Recall (R),
F = 2 PR

P+R . Precision is defined as the percentage of points
on the predicted mesh which lie within some distance τ
from a point on the ground truth mesh. Vice versa, Recall is
defined as the percentage of points on the ground truth mesh
which lie within the same distance τ from a point on the
predicted mesh. In all our experiments, we use a distance
threshold τ = 0.01 m. Before the Precision and Recall are
computed, the input meshes are aligned with the iterative
closest point (ICP) algorithm. We use the evaluation script
provided by the authors of [4]1. Finally, we report the depth
L1 metric which renders depth maps from randomly sam-
pled view points from the reconstructed and ground truth
meshes. The depth maps are then compared and the L1 er-
ror is reported and averaged over 1000 sampled views. We

1https://github.com/tfy14esa/evaluate_3d_
reconstruction_lib

Metric off 0 off 1 off 2 off 3 off 4

Mesh Depth L1 0.30 0.61 0.53 0.54 0.45
Rendering Depth L1 0.037 0.025 0.054 0.082 0.061

Table E.1: Depth L1 Error [cm] on Replica [5]. The table
reports the depth L1 error for the rendered depth map and
for the reconstructed mesh (after TSDF fusion and March-
ing cubes). The results in the main paper only report the
depth L1 error for the mesh.

use the evaluation code provided by [8].

Tracking. We use the absolute trajectory error (ATE)
RMSE [6] to compare tracking error across methods. This
computes the translation difference between the estimated
trajectory and the ground truth. Before evaluating the ATE
RMSE, we align the trajectories with Horn’s closed form
solution [2].

E. More Experiments

Dynamic Search Radius Visualization. In the main pa-
per, we ablate how the tracking, reconstruction and render-
ing performance metrics vary as the upper bound ru of the
search radius is changed. In Fig. E.1 we show qualitative
examples of the surface point cloud for some selected val-
ues ru on room 0. Fig. E.1a shows the point cloud with-
out dynamic resolution using fixed rl = ru = 4cm for all
points. In Figs. E.1b to E.1d we enable dynamic resolution
and show how the point density varies across the scene for
different values of ru. We use rl = 2cm for all these exper-
iments. The total number of points decreases from 66K to
54K. This is due to the sparsification of the point density in
regions with little texture information. It is clear that using
a dynamic search radius preserves rich textures, while ef-
fectively sparsifying the point density in textureless regions
such as the sofas and walls.

Additional Qualitative Reconstructions. In Fig. E.4 we
show additional reconstructions from the Replica dataset
where our method is compared to NICE-SLAM [8] and
Vox-Fusion [7].

Additional Qualitative Renderings. In Fig. E.5 we
show additional renderings from the Replica dataset where
our method is compared to NICE-SLAM [8] and Vox-
Fusion [7].

Evaluating Depth Error on Rendered Depth Maps. Ta-
ble E.1 shows additional results when the depth L1 error
is evaluated directly on the rendered depth maps from the
neural point cloud. This is in contrast to the main paper
where we report the depth L1 on the predicted mesh from
randomly sampled views. Compared to the mesh depth L1
metric, we report one order of magnitude smaller error from
our rendered depth maps along the estimated trajectory.

https://github.com/tfy14esa/evaluate_3d_reconstruction_lib
https://github.com/tfy14esa/evaluate_3d_reconstruction_lib


66K Points PSNR: 32.60 dB

(a) rl = ru = 4cm

58K Points PSNR: 32.05 dB

(b) rl = ru = 8cm

57K Points PSNR: 31.47 dB

(c) rl = ru = 12cm

54K Points PSNR: 30.92 dB

(d) rl = ru = 16cm

Figure E.1: Dynamic Search Radius Visualization. With
the dynamic point density enabled (Figs. E.1b to E.1d),
we use less points than without the dynamic point density
(Fig. E.1a) while preserving high point densities in texture-
rich regions, such as the window blinds.

Adaptive Mapping Ablation. As mentioned in the imple-
mentation details in the main paper, the number of mapping
iterations is computed as mi = md

i n/300, where md
i is the

default mapping iterations and n is the number of added
points for the frame at hand. By default, we clip mi to lie
within [0.95md

i , 2m
d
i ]. We further decrease the lower bound

from 0.95 to [0.9, 0.05] on the office 0 scene. The re-
sulting average mapping iterations per frame and associated
per frame mapping runtimes are presented in Table E.2. We
find that we can speed up the mapping phase by a factor of
four compared to the results reported in the main paper.

Lower Bound 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

Avg. Iter./Frame 281 253 225 199 172 147 123 102 78 72
Mapping/Frame [s] 9.22 8.30 7.39 6.53 5.65 4.83 4.04 3.35 2.56 2.36

Table E.2: Adaptive Mapping Ablation. For various
choices of the lower bound, Average Mapping Iterations,
and Per-frame Mapping Runtime using adaptive iterations.
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Figure E.2: Adaptive Mapping Ablation. We report the
rendering, tracking and reconstruction accuracy for differ-
ent lower bound values and find that only the rendering
quality is marginally worse as fewer mapping iterations are
used.

Fig. E.2 summarizes the rendering, tracking and reconstruc-
tion metrics for different lower bound values. All metrics
are virtually unchanged until the lower bound drops to 0.8.
When the lower bound 0.05 is used, the per frame mapping
speed is increased by 406% compared to the default case,
while the tracking accuracy only degrades by 10%, depth
L1 by 23%, F-score by 3% and PSNR by 6%. This suggests
the effectiveness of our adaptive mapping iteration strategy.

Additional ScanNet Results. In Table E.3, we provide ad-
ditional evaluation on four ScanNet scenes over the main
paper and show competitive performance compared to the
baseline methods. When taking the average over all scenes
(the scenes in the main paper and the additional four scenes
we select), we find that our method outperforms NICE-
SLAM [8] and Vox-Fusion [7].

Qualitative Results on TUM-RGBD and ScanNet. We
compare our method to NICE-SLAM [8] and ESLAM [3]
in Fig. E.3. In the cases where ground truth is available, we
also compare to that. We showcase, from top to bottom, the
rendering performance on TUM-RGBD, the colored mesh
and the phong shaded mesh. The results suggest that our
method can produce high quality renderings, textured and
untextured meshes.
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Figure E.3: Rendering and Reconstruction Comparisons. We showcase, from top to bottom, the rendering performance
on TUM-RGBD, the colored mesh and the phong shaded mesh. The results suggest that our method can produce high quality
renderings, textured and untextured meshes.



Method \ Scene 0000 00 0025 02 0059 00 0062 00 0103 00 0106 00 0126 00 0169 00 0181 00 0207 00 Avg.

NICE-SLAM [8] 12.00 10.11 14.00 4.59 4.94 7.90 21.80 10.90 13.40 6.20 10.58
Vox-Fusion∗ [7] 68.84 (16.55) 8.54 24.18 7.96 5.26 8.41 5.77 27.28 23.30 9.41 18.90 (13.67)
Point-SLAM (Ours) 10.24 8.05 7.81 3.75 7.79 8.65 8.10 22.16 14.77 9.54 10.08

Table E.3: ScanNet Tracking We report the ATE RMSE (↓ [cm]) as the average over three runs. For failed runs we report
the average of only successful runs in parentheses. All methods work differently well on various scenes, but our method
performs better on average. Best results are highlighted as first , second , and third .
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Figure E.4: Reconstruction Performance on Replica [5]. Point-SLAM yields on average more precise reconstructions than
existing methods. We use normal shading to highlight geometric changes better.
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Figure E.5: Rendering Performance on Replica [5]. Thanks to the adaptive density of the neural point cloud, Point-SLAM
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