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In this supplementary material, we provide more details
on the training algorithm, experimental settings, additional
comparisons, and analysis experiments. We have released
our code at our project page: https://val.cds.
iisc.ac.in/DSiT-SFDA/. The remainder of the sup-
plementary material is structured as shown below:

• Sec. 1: Approach (Algorithm 1)
• Sec. 2: Implementation Details

– Sec. 2.1: Domain Augmentations (Fig. 1A)

– Sec. 2.2: DRI Dataset Extraction (Fig. 1B)

– Sec. 2.3 Domain-specificity criterion

– Sec. 2.4: Experimental Settings

• Sec. 3 Additional experimental results
– Sec. 3.1 Extended comparisons (Table 2, 6)

– Sec. 3.2 Vendor-side DSiT results (Table 3)

– Sec. 3.3 Model adaptation setting (Table 4)

– Sec. 3.4 Results on different backbones (Table 5)

– Sec. 3.5 Analysis for augmentations (Table 8)

– Sec. 3.6: Sensitivity analysis of DSiT (Table 9)

– Sec. 3.7 Training time comparisons (Table 7)

– Sec. 3.8: Statistical significance (Table 10)

– Sec. 3.9: Target adaptation losses (Table 11)

– Sec. 3.10: Effect of DRI grid-size (Figure 2)

1. Approach
Table 1 shows a complete list of the notations used in the

paper. We summarize our full approach in Algorithm 1 and
describe the details of the approach in this section.
Target adaptation losses. For the client-side target adapta-
tion, we use the Information Maximization loss formulation
from SHOT [8], which consists of two terms: entropy loss
Lim and diversity loss Ldiv . The entropy loss Lim ensures
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Table 1. List of all the notations used throughout the paper.

Symbol Description

M
od

el
s h Backbone feature extractor

fg Goal task classifier
fd Domain classifier

Tr
an

sf
or

m
er

s

zc Class token of last layer
zd Domain token of last layer
NP Number of patch tokens
WQ Query weights
WK Key weights
WV Value weights
θQ Query weights of all layers
θK Key weights of all layers
θV Value weights of all layers

D
at

as
et

s

Ds Labeled source dataset
Dt Unlabeled target dataset
Ai ith augmentation function
D[i]

s ith augmented source dataset
D[i]

t ith augmented target dataset
(xs, ys) Labeled source sample

(x
[i]
s , ys, yd) Augmented source sample

xt Unlabeled target sample
(x

[i]
t , yd) Target augmented sample

Sp
ac

es

X Input space
Cg Label set for goal task
Zc Class token feature space
Zd Domain token feature space

Z1, . . . ,ZNP
Patch token

L
os

se
s Ldom Domain classification loss

Lcls Task classification loss
Lim Entropy loss
Ldiv Diversity loss

C
ri

te
ri

on γdom Domain specificity
γcls Task specificity
γall Inter-class-inter-domain similarity
τ Threshold

that the confidence of the model towards a label is high.
The diversity loss Ldiv ensures that the model’s predictions
are well-balanced across all classes and prevents the model
from producing degenerate solutions. We define the two
terms as follows:

Lim = − E
xt∈X

K∑
k=1

δk(fg(zc)) log δk(fg(zc)) (1)
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Ldiv =

K∑
k=1

p̂k log p̂k = KL(p̂,
1

K
1K)− logK (2)

where δk(a) =
exp(ak)∑
i exp(ai)

represents the kth element in the

softmax output of a ∈ RK , and zc is the class-token from
h for an input xt. We optimize all parameters of the trans-
former backbone h, except the query weights θQ as follows,

min
θh\θQ,fg

E
Dt

[Lim + Ldiv] (3)

We also utilize the clustering method of SHOT [8] for self-
supervised pseudo-labeling. First, we obtain the centroid
of each class in the target domain via weighted k-means
clustering,

ck =

∑
xt∈X δk(fg(zc))zc∑
xt∈X δk(fg(zc))

(4)

The centroid characterizes the labels for the samples. In or-
der to obtain a pseudo-label, we choose the closest centroid
based on the cosine distance as follows,

ŷc = argmin
k

Dc(zc, ck) (5)

where Dc denotes the cosine-distance in the class-token fea-
ture space Zc between the centroid and the input sample
features zc. As the model keeps training, the centroids are
updated after every few iterations, and pseudo-labels are as-
signed according to the new centroids.
Preliminaries on Transformers. Recently, Vision Trans-
formers (ViT) have been shown to improve significantly on
several vision tasks [2]. Self-attention is one of the most
important components in the transformer architecture. A
ViT takes an image as input x ∈ X = RH×W×C in the
form of patches of size (P, P ), where H,W is the image
size and C is the number of channels. The total number of
patches is denoted as NP = H×W/P 2. For self-attention,
each patch is projected into Q,K, V with a set of weights
WQ,WK ,WV respectively. The self-attention [16] is com-
puted as follows,

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (6)

where dk is the dimension of the keys/queries.

2. Implementation Details
In this section, we describe our analysis and benchmark

experiments, which includes the augmentation strategies,
DRI dataset creation, backbone, and optimization details.

2.1. Domain Augmentations

To induce domain-specificity, we use five label-preserving
augmentations to simulate virtual domains (Fig. 1A):

Algorithm 1 DSiT Training Algorithm

Vendor-side training

1: Input: Let Ds be source data , D[i]
s be augmented

DRI dataset for each augmentation Ai, ImageNet pre-
trained DeiT-B backbone h from [17], randomly initial-
ized goal classifier fg and randomly initialized domain
classifier fd.

2: for iter < MaxIter do:
Goal task training

3: for iter < MaxTaskIters do:
4: Sample batch from Ds

5: Compute Lcls using Eq. 2 (main paper)
6: update θh \ θQ, θfg by minimizing Lcls

7: end for
Domain classifier training

8: for iter < MaxDomainIters do:
9: Sample batch of DRI from D[i]

s

10: Compute Ldom using Eq. 1 (main paper)
11: update θQ, θfd by minimizing Ldom

12: end for
▷ The two steps are carried out alternatively

13: end for
Client-side training

14: Input: Target data Dt, Target augmented DRI data
D[i]

t , source-side pretrained backbone h, goal classifier
fg and domain classifier fd.

15: for iter < MaxIter do:
Goal Task Training

16: for iter < MaxTaskIters do:
17: Sample batch from Dt

18: Compute Lim and Ldiv using Eq. 1, 2 (suppl.)
19: update θh \ θQ, θfg by minimizing Lim +Ldiv

20: end for
Domain classifier training

21: for iter < MaxDomainIters do:
22: Sample batch of DRI from D[i]

t

23: Compute Ldom using Eq. 1 (main paper)
24: update θQ, θfd by minimizing Ldom

25: end for
▷ The two steps are carried out alternately

26: end for

a) FDA augmentation: We use FDA [18] to stylize an im-
age with a fixed style-transfer set of images [5]. This is
done by superimposing the amplitude spectrum of the style
images onto the input image.
b) Weather augmentations: We employ frost and snow
augmentations [7] to augment the input images.
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Shuffle Domain NMI Class NMI
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Figure 1. A. Label-preserving augmentations are first applied to the input to simulate novel domains. B. Then, the task-destructive transform
of patch-shuffling is used to obtain the DRI image. C. We analyze the Domain-NMI and Class-NMI for different grid-sizes used in patch-
shuffling. An example of 3× 3 shuffling is shown in B.

c) AdaIN augmentation: In this augmentation [5], we
alter the feature statistics through an instance normalization
layer [15] that stylizes the images using the same reference
style image set as in FDA.
d) Cartoon augmentation: We employ cartoonization-
based augmentations [7] to convert inputs to cartoon-like
images with reduced texture.
e) Style augmentation: We use stylization from Jackson
et al. [6]. No controllable parameters are available and style
is chosen without a reference style image.

2.2. DRI Dataset Extraction

The Domain-Representative Inputs (DRI) are created us-
ing augmentations as shown in Fig. 1. An input image is
first augmented to simulate a virtual domain. Note that only
one augmentation is used at a time. After this, the image
is shuffled across patches to obtain a DRI image. The ex-
tent of patch shuffling is done such that the domain infor-
mation is still intact, however the task-label information is
lost. Following prior works [10], we use normalized mu-
tual information (NMI) to assess the consistency between
the feature clusters formed by a self-supervised learning al-
gorithm on the transformed images and the class/domain
labels (see Fig. 1C). To obtain NMI, the training images
are first subjected to the class-destructive transformation to
produce DRI images, and these images are then subjected
to self-supervised learning to produce class and domain in-
variant features. In order to assign a domain or class label to
each cluster, we finally apply clustering to the learned fea-
tures. For the self-supervised learning, we employ SimCLR
[1] on the DRI images and apply Gaussian mixture-based
clustering to the learned features to obtain either domain or
class labels for domain-NMI and class-NMI respectively.

From Figure 1, we see that the Domain NMI rises within
a certain range as the number of grid partitions increases,
whereas the Class-NMI sharply declines. These results

demonstrate that domain-specific features can be learned by
using an appropriate grid partition size. Hence, for all our
experiments, we have used a grid shuffling size of 4× 4 for
representing DRI inputs.

2.3. Domain-specificity disentanglement criterion

As discussed in section 3.3 (main) paper we define the a
domain-specificity disentanglement criterion based on three
parameters: γcls: intra-class, inter-domain similarity, γdom:
intra-domain inter-class and γall denotes the inter-class,
inter-domain similarity. We define the criterion of domain-
specificity disentanglement as follows:

γdom = E
Ds∪Dt

Dc(zc1 , zc2), where yc1 ̸= yc2 , yd1
= yd2

(7)
γcls = E

Ds∪Dt

Dc(zc1 , zc2), where yc1 = yc2 , yd1 ̸= yd2

(8)
γdom = E

Ds∪Dt

Dc(zc1 , zc2), where yc1 ̸= yc2 , yd1
̸= yd2

(9)
where Dc(zc1 , zc2) denotes cosine similarity between the
class-token features of two inputs x1, x2 with correspond-
ing class labels yc1 , yc2 and domain labels yd1 , yd2 .

How to choose the threshold τ? We empirically evalu-
ated the metrics γcls, γdom and γall in Table 6 (main paper)
and found that task-specificity γcls and domain-specificity
γdom are closer for DSiT (Ours) than the SHOT-B baseline.
Based on our observations, we choose a threshold of 0.05.

2.4. Experimental settings

Backbone details. For our experiments, we use
DeiT-Base [14] which has 86M parameters, pretrained on
ImageNet-1k dataset. DeiT-Base architecture consists of
12 layers, where each layer consists of multi-head self-
attention with 12 heads. The input to the transformer is



Table 2. Single-Source Domain Adaptation (SSDA) results on the DomainNet dataset. * indicates results taken from [13].

ResNet-
101 [4] clp inf pnt qdr rel skt Avg.

clp - 19.3 37.5 11.1 52.2 41.0 32.2
inf 30.2 - 31.2 3.6 44.0 27.9 27.4
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3
rel 48.4 22.2 49.4 6.4 - 38.8 33.0
skt 46.9 15.4 37.0 10.9 47.0 - 31.4

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6

CDAN
[9] clp inf pnt qdr rel skt Avg.

clp - 20.4 36.6 9.0 50.7 42.3 31.8
inf 27.5 - 25.7 1.8 34.7 20.1 22.0
pnt 42.6 20.0 - 2.5 55.6 38.5 31.8
qdr 21.0 4.5 8.1 - 14.3 15.7 12.7
rel 51.9 23.3 50.4 5.4 - 41.4 34.5
skt 50.8 20.3 43.0 2.9 50.8 - 33.6

Avg. 38.8 17.7 32.8 04.3 41.2 31.6 27.7

MIMFTL
[3] clp inf pnt qdr rel skt Avg.

clp - 15.1 35.6 10.7 51.5 43.1 31.2
inf 32.1 - 31.0 2.9 48.5 31.0 29.1
pnt 40.1 14.7 - 4.2 55.4 36.8 30.2
qdr 18.8 3.1 5.0 - 16.0 13.8 11.3
rel 48.5 19.0 47.6 5.8 - 39.4 32.1
skt 51.7 16.5 40.3 12.3 53.5 - 34.9

Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1

MDD+
SCDA [19] clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9
inf 32.7 - 34.5 6.3 47.6 29.2 30.1
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3
rel 55.5 23.7 52.9 9.5 - 45.2 37.4
skt 55.8 20.1 46.5 15.0 56.7 - 38.8

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3

DeiT-B
[14] clp inf pnt qdr rel skt Avg.

clp - 24.3 49.6 15.8 65.3 52.1 41.4
inf 45.9 - 45.9 6.7 61.4 39.5 39.9
pnt 53.2 23.8 - 6.5 66.4 44.7 38.9
qdr 31.9 6.8 15.4 - 23.4 20.6 19.6
rel 59.0 25.8 56.3 9.16 - 44.8 39.0
skt 60.6 20.6 48.4 16.5 61.2 - 41.5

Avg. 50.1 20.3 43.1 10.9 55.5 40.3 36.7

SHOT-B
[8] clp inf pnt qdr rel skt Avg.

clp - 27.0 49.7 16.5 65.4 53.2 46.1
inf 46.4 - 45.9 7.4 60.6 40.1 40.1
pnt 54.6 25.7 - 8.1 66.3 49.0 40.7
qdr 33.3 6.8 15.5 - 23.8 24.0 20.7
rel 59.3 28.1 57.4 9.0 - 47.3 40.2
skt 64.0 26.5 55.0 18.2 63.8 - 45.5

Avg. 51.5 26.6 44.7 11.8 56.0 42.7 38.9

CDTrans∗
[17] clp inf pnt qdr rel skt Avg.

clp - 27.9 57.6 27.9 73.0 58.8 49.0
inf 58.6 - 53.4 9.6 71.1 47.6 48.1
pnt 60.7 24.0 - 13.0 69.8 49.6 43.4
qdr 2.9 0.4 0.3 - 0.7 4.7 1.8
rel 49.3 18.7 47.8 9.4 - 33.5 31.7
skt 66.8 23.7 54.6 27.5 68.0 - 48.1

Avg. 47.7 18.9 42.7 17.5 56.5 38.8 37.0

SSRT-B∗

[13] clp inf pnt qdr rel skt Avg.

clp - 33.8 60.2 19.4 75.8 59.8 49.8
inf 55.5 - 54.0 9.0 68.2 44.7 46.3
pnt 61.7 28.5 - 8.4 71.4 55.2 45.0
qdr 42.5 8.8 24.2 - 37.6 33.6 29.3
rel 69.9 37.1 66.0 10.1 - 58.9 48.4
skt 70.6 32.8 62.2 21.7 73.2 - 52.1

Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2

DSiT
(Ours) clp inf pnt qdr rel skt Avg.

clp - 27.2 51.8 23.1 70.2 54.7 45.4
inf 52.3 - 48.8 12.8 68.3 44.2 45.3
pnt 59.2 26.1 - 14.5 71.5 51.4 44.5
qdr 38.1 8.3 21.2 - 37.2 27.6 26.5
rel 60.4 28.0 57.8 13.1 - 49.7 41.8
skt 66.3 27.5 56.0 24.4 70.2 - 48.9

Avg. 55.3 23.4 47.1 17.6 63.5 45.5 42.1

Table 3. Vendor-side Performance of Single-Source Domain
Adaptation (SSDA) on Office-Home, DomainNet and VisDA.

Training stage Method Office-Home
(4 settings) VisDA DomainNet

Vendor-side SHOT 74.8 67.4 36.7
DSiT 76.6 (+1.8) 68.7 (+1.3) 37.8 (+1.1)

Client-side SHOT 79.0 85.9 38.3
DSiT 81.1 (+2.1) 87.5 (+1.6) 42.1 (+3.8)

an RGB image that is divided into 16 × 16-sized patches.
Therefore, P = 16 and NP = 14 for all our experiments.
DeiT-B contains an additional distillation token, however,
the rest of the architecture is the same as a ViT-B backbone.

Optimization details. For optimizing the training ob-
jectives, we use Stochastic Gradient Descent (SGD) with
momentum of 0.9, and weight decay ratio of 1× 10−4. The
learning rate is set to 5 × 10−3 for fine-tuning the domain
classifier on the target domain. For the Goal Task train-
ing, we use a learning rate of 8× 10−3 for OfficeHome and
VisDA, 8× 10−2 for Office-31, and 2× 10−3 for Domain-
Net. The Goal Task Training and Domain-specific disen-
tanglement Training for the vendor-side source domain are
done for 20 epochs, of which 10 are used for warm-up with
a warm-up factor of 0.01. In the client-side target adapta-
tion, the goal task training (task classifier training) is car-
ried out for 2 epochs, followed by the domain specificity
disentanglement (domain classifier training) until a domain
classification accuracy of 80% is achieved. These two steps
are carried out alternatively for an effective 40 epochs of

Table 4. Single-Source Domain Adaptation (SSDA) on Office-
Home (4 settings) for different vendor-side and client-side adapta-
tion strategies.
# Vendor-side Client-side Ar→Cl Cl→Pr Pr→Rw Rw→Ar Avg

1. SHOT SHOT 67.1 83.4 85.3 80.4 79.1
2. SHOT DSiT 68.4 85.7 86.8 81.8 80.7 (+1.6)

3. DSiT SHOT 67.1 83.0 84.9 81.0 79.0
4. DSiT DSiT 69.2 86.8 86.6 82.4 81.3 (+2.3)

task-classifier training, the same as CDTrans [17]. We use
an NVIDIA RTX A5000 GPU with 64GB RAM and 24GB
GPU memory to train our models. Our code takes a total
training time of approximately 5 hours for Target adapta-
tion training for the Office-Home dataset.

3. Additional Experimental Results

3.1. Extended Comparisons

Comparisons on single-source domain adaptation
(SSDA): In Tables 2, we show additional comparisons for
our method with existing SSDA works on the DomainNet
benchmark. We achieve significant improvements over
existing works, especially on CDTrans [17] despite it being
a non-source-free method. It is worth noting that CDTrans
uses the entire domain during the training and evaluation
steps, while we train on the train split and evaluate on the
test split, same as SSRT [13].

Multi-target domain adaptation (MTDA): In Table 6,
we provide a quantitative comparison with the prior arts
for multi-target domain adaptation on Office-Home. The



Table 5. Single-Source Domain Adaptation (SSDA) on Office-
Home on ViT-S Backbone. SF indicates source-free adaptation.
“-S” denotes Small ViT Backbone.

Method SF Office-Home

Ar�Cl Cl�Pr Pr�Rw Rw�Ar Avg.

CDTrans-S [17] ✗ 60.7 75.6 84.4 77.0 74.4
SHOT-S ✓ 56.3 73.7 81.3 76.7 71.9
DSiT-S (Ours) ✓ 55.3 77.4 83.0 76.9 73.1 (+1.2)
SHOT-B ✓ 69.07 85.31 88.13 83.89 81.6
DSiT-B (Ours) ✓ 71.84 87.18 88.11 83.4 82.6 (+1.0)

Table 6. Multi-Target Domain Adaptation (MTDA) on Office-
Home. SF indicates source-free adaptation. ResNet-based meth-
ods (top) and Transformer-based methods (bottom).

Method SF Office-Home

Ar� Cl� Pr� Rw� Avg.

MT-MTDA [11] ✗ 64.6 66.4 59.2 67.1 64.3
CDAN+DCL [9] ✗ 63.0 66.3 60.0 67.0 64.1
D-CGCT [12] ✗ 70.5 71.6 66.0 71.2 69.8

D-CGCT-B [12] ✗ 77.0 78.5 77.9 80.9 78.6
SHOT-B* ✓ 75.4 79.3 73.6 77.1 76.4
DSiT-B (Ours) ✓ 77.3 83.4 75.6 76.8 78.3 (+1.9)

performance improvement is quite prominent (+2.0%) over
the source-free prior art (SHOT-B), and the proposed ap-
proach also yields comparable performance to non-source-
free prior arts, D-CGCT and CDAN+DCL [12], which
mainly focus on domain invariant features.

3.2. Vendor-side DSiT Performance

Our DSiT approach incorporates a novel Domain-
Specificity Training (DST) that improves the vendor-side
performance over the standard source-only baseline (shown
in Table 3). Further, we observe significant gains from ven-
dor to client-side (4.5% and 4.3% for Office Home and Do-
mainNet, Table 3). This shows that our vendor-side DST
positively aids client-side DST.

Table 7. Training time comparison of our approach DSiT vs SHOT
on Office-Home (Rw�Ar)

Method
Training time (in min) Inf.

time
(ms)

Acc.Src.
train

Src.
DST

Tgt.
adapt

Tgt.
DST

Total
time

SHOT-B 12 - 17 - 29 3.6 80.4
Ours 12 109 - 258 270 3.6 82.4

3.3. Performance in a Model Adaptation Setting

Our DSiT approach works well even for a model adap-
tation setting, where we perform DST only on client-side
without any specialized training on the vendor-side (#2, Ta-
ble 4). However, we get the best results when DST is done

on both vendor and client-side (#4, Table 4). We also ob-
serve that SHOT target adaptation (TA) with our vendor-
side DSiT model (#2) gives the same performance as the
baseline (#1). This indicates that our proposed TA (#4) is
able to better leverage our vendor-side model to yield im-
proved adaptation performance.

Table 8. Analysis for A-distance of three augmentations on 4 set-
tings of Office-Home (SSDA).

Aug. Ar�Cl Cl�Pr Pr�Rw Rw�Ar

FDA 0.857 0.730 0.829 0.286
Original 1.049 0.852 0.834 0.504
AdaIN 1.072 0.648 0.842 0.136

Table 9. Sensitivity Analysis on Single-Source Domain Adapta-
tion (SSDA) on Office-Home. (4 settings)

Epochs Ar � Cl Cl � Pr Pr � Rw Rw � Ar Avg.

1 64.1 79.8 84.7 79.6 77.0
2 69.2 86.1 86.6 82.4 81.1
3 69.6 86.7 87.3 82.4 81.5
5 69.5 86.3 87.1 82.5 81.3

3.4. Performance on different backbones

We report results in Table 5 for DeiT-S backbone (with
22M parameters) pre-trained on ImageNet and observe that
our approach improves over the baseline SHOT-S baseline
by 1.2%. Note that “-S” denotes Small. We also report the
results over ViT-B backbone which is trained on ImageNet-
21K dataset. Over ViT-B, our approach shows an improve-
ment of 1.0% over the SHOT baseline.

3.5. Experimental analysis for augmentations

In Table 8, we show the A-distance (domain-gap) be-
tween augmented source and target domains on Office-
Home using the class token of a source-trained DeiT-B. The
domain gap for FDA is lower than the original source-target
while it is higher for AdaIN. This validates Fig. 4 (main
paper) which illustrated that augmented domains may be
closer or farther than original domains.

Table 10. Significance experiments of DSiT-B (Ours) on Single-
Source DA (SSDA) on Office-Home (4 settings).

Ar � Cl Cl � Pr Pr � Rw Rw � Ar Avg.

69.2 ±0.1 86.1 ±0.3 86.6 ±0.3 82.4 ±0.6 81.1 ±0.1

3.6. Sensitivity Analysis of Alternate Training

In our approach, we perform alternate rounds of train-
ing of the domain and the task classifier. We usually train
the task classifier for a few epochs, followed by the domain
classifier training. In this analysis, we vary the number of
epochs of task classifier training from 1 to 5 epochs in an



alternate round and observe its impact on task accuracy. Ta-
ble 9 shows that the task accuracy increases at 2 epochs and
is maximum at 3 epochs of training. In all our experiments,
we report results with 2 epochs of task classifier training.

3.7. Training time comparisons

We provide detailed training and inference time compar-
isons of our method with SHOT-B in Table 7. The DST
training time is higher due to augmented images being com-
puted at training time, which can be easily reduced by load-
ing pre-computed augmented images. We point out that the
inference time remains the same, highlighting the fact that
the same DeiT-Base architecture is used for both methods.

3.8. Statistical Significance

We report mean and standard deviation over 3 runs for
three Office-Home settings in Table 10. We observe that
the standard deviation (0.1 to 0.3) is very low w.r.t. to our
gains (∼2%) over SHOT-B.

Table 11. Ablation study for the three components of the client-
side adaptation on 4 settings of Office-Home. PL indicates
pseudo-labeling
Method Ar � Cl Cl � Pr Pr � Rw Rw � Ar Avg.

Source Baseline 62.5 79.4 84.3 79.2 76.4
Lim 62.1 79.7 80.1 73.9 74.0
Lim + Ldiv 68.2 86.0 86.6 81.3 80.5
Lim + Ldiv + PL 69.2 86.1 86.6 82.4 81.1

3.9. Effect of target adaptation losses

We perform an ablation study on 4 settings of the Office-
Home dataset to analyze the influence of each component
of the target adaptation objective described in Section 1,
and present the results in Table 11. Target adaptation with
the entropy loss Lim alone shows sub-optimal results, even
when compared to the source-trained baselines, which is
also observed by [8]. Adding the diversity loss Ldiv shows
comparatively better performance, indicating that balanc-
ing the classifier’s predictions across all classes is essen-
tial. Lastly, the self-supervised pseudo-labeling PL also
improves the performance further, demonstrating its impor-
tance towards the client-side adaptation.

3.10. Effect of DRI grid-size

Here, we study the effect of varying the DRI grid size for
the domain classifier training to determine its influence on
the target accuracy (see Figure 2). The target accuracy grad-
ually increases upon increasing the grid size from 1 to 4,
with the best results being observed at grid size 4. Beyond
this point, the performance begins to drop, which can be at-
tributed to the excessive destruction of information caused
by over-partitioning of the images. To achieve a balance be-
tween the effect of the task-destructive transformation and
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Figure 2. Sensitivity analysis on DRI grid-size for Single-Source
DA on Office-Home (4 settings)

its impact on the target accuracy, we use a grid size of 4× 4
for all our experiments.
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