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Thanks for checking the supplementary materials. in
which we provide additional details for the ease of replicating
the results of our method. For video results, we encourage
the reader to consult the project webpage.

1. Implementation details
1.1. NeRF Model

We train and evaluate all models at 256x256 resolution,
except pi-GAN [3] which we train and evaluate at 128x128
following [4].

We use a constant 49.13 degree field of view and pinhole
camera model. We use a camera radius of 2.732 following
[10] and a canonical pose at (−2.732, 0, 0). All views canon-
ical and novel are looking at (0, 0, 0) and have a constant
camera up vector of (0, 0, 1). We sample novel view camera
locations uniformly in a disc in the YZ-plane centered at
the canonical pose with radius .4. We use a near plane of .7
and far plane of 1e6. We find that using the slightly large
near plane of .7 was necessary in order to avoid a failure
mode where all the content was clustered very close to the
camera leading to poor novel views; we hope to eliminate
this failure mode in future work.

We perform volume rendering at the full 256x256 resolu-
tion using the importance sampling scheme of [1]. We have
a separate proposal and NeRF MLP and render in two stages,
the first stage using the proposal MLP to evaluate a wide
range of sample locations, and the second stage using the
NeRF MLP queried at locations determined by importance
sampling of the weights and locations from the first stage.
During training, we add a stop-grad between the proposal
and NeRF MLP like [1] and supervise the Proposal MLP
with the interlevel loss. Our NeRF MLP is not view depen-
dent and the only input it receives is triplane features which
are determined by looking up the contracted 3D points of
the sample locations. We apply a fixed orthonormal trans-

formation to all points before triplane lookup because our
canonical pose is axis-aligned, so we desire that our triplanes
are not axis-aligned to avoid artifacts.

We evaluate 32 samples along each ray for each sampling
stage. Thus, rendering a full 256x256 RGB image takes
256x256x64 triplane lookups and MLP evaluations. We
use the same number of ray samples, 32, for training, FID
evaluation, and rendering videos.

1.2. Setup and hyperparameters

We train with the Adam optimizer [9] with β1 = .9, β2 =
.99, and cosine learning rate schedule with 50K warmup
steps, similar to [15], with an initial autoencoder LR of 0
and max LR of 1e-4. We use codebook size 8192 and l2-
normalized, factorized codebook with embedding dimension
8.

Different from [15], we do not use weight decay, and
our discriminator LR is scaled down from the autoencoder
LR by .5 so that the discriminator does not overpower the
autoencoder, which was an issue especially in early training.

Due to the many losses in our Stage 1 training, we outline
their weights in Table 1 and reference the original implemen-
tation if they are not losses designed by us.

1.3. Discriminators

We use StyleGAN [8] discriminators for both the main
and novel view discriminator. They are identical except
that the novel view discriminator accepts 4-channel RGBD
images, and the main view discriminator accepts 3-channel
RGB images.

1.4. Timing and throughput

We train our main model on ImageNet for 1000K steps in
Stage 1, and 340K steps in Stage 2. Stage 1 training takes 16
days and Stage 2 training takes 3 days on 64 CloudTPUv4.
We note that good performance (<25 FID) can be achieved
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Loss Weight

l2 [15] 1
Perceptual [15] 1e-1
Logit-laplace [15] 1e-1
Discriminator [15] 1e-1
Novel discriminator 1e-1
Quantizer [15] 1
Weighted pointwise depth (λdepth) 1e1
Negative depth scale penalty (λs1) 1
Large depth scale penalty (λs2) 1e-3
Interlevel [1] 1
Distortion [1] 2.5e-1

Table 1: Weights of various losses used in Stage 1 training
of our autoencoder.

with a fraction of this training time (around 200K steps for
both stages), but we train as long as possible to achieve the
best results. For inference on a single V100, our Stage 1
model renders 8.7 img/s. We train with a Stage 1 batch size
of 128 and Stage 2 batch size of 512. For each batch in Stage
1, we render 256 images; 128 to reconstruct the full batch
at the canonical view, and an additional 128 novel views to
be critiqued by the novel view discriminator. Though this
is expensive, our volume rendering stage is made cheaper
even than [4] by using 32 instead of 64 hidden units for the
feature MLPs and using 32 instead of 48 samples per ray.
We leverage gradient accumulation in Stage 2 training in
order to train with 512 batch size.

1.5. Details about MVS-1

Due to the simplicity of CompCars and the complexity of
ImageNet, it is desirable to study a dataset of intermediate
complexity to better understand the shortcomings of GAN-
based methods. We thus introduce a new dataset, Multiview
ShapeNet-1, to serve as this intermediate.

Multiview ShapeNet was introduced in [13] to study the
problem of novel view synthesis from single images. We syn-
thesize a version of this dataset called Multiview Shapenet-1.
Different from the original dataset, we have only one view
per synthesized scene (which prevents novel view supervi-
sion as used in [13]), and we have only one salient object
per scene. We synthesize the dataset with 360-degree views
of a random salient object sampled from the 55 ShapeNet
[5] object categories rendered against a random HDR back-
ground. During dataset synthesis, in addition to sampling
camera poses with random elevation and azimuth, we also
randomly sample the camera field of view and adjust the
camera radius from the center of the scene accordingly so
that the salient object is generally within the picture frame.
Examples synthesized from this dataset are shown in Figure
1.

top-k 1000 2000 3000 4000 8192 8192 8192
top-p 1.00 1.00 1.00 1.00 1.00 0.98 0.95

FID ↓ 31.5 33.2 34.1 34.7 35.4 32.2 35.7

Table 2: FID scores on ImageNet from sampling over top-k
and top-p values. The size of our full codebook is 8192.

We will make this dataset available upon acceptance.

1.6. Evaluation

As is standard [15], we compute Stage 1 metrics (re-
construction) over the ImageNet validation set and Stage 2
metrics (generation) over real samples from the train set and
generated samples. We use 50K samples to evaluate FID for
all methods. We sample views for Stage 2 FID computation
uniformly in a disc of radius .2 tangent to the sphere at the
canonical pose.

We use the Depth Accuracy metric used in [14, 4], but
differently we don’t mask out any invalid regions because
our monocular depth estimator DPT [12] predicts a dense
depth map over the input and every pixel is assumed to be
valid. We also use inverse depth instead of depth because we
model much larger scenes than either [14] or [4].

We experiment with classifier guidance but find it gives
only a small performance boost, and so investigating model
improvements was more worthwhile to improve the FID than
tweaking classifier guidance settings.

2. Additional experiments

Sampling We analyze the performance of VQ3D with top-
p and top-k sampling in Table 2, as VQ-GAN [6] noted these
sampling changes can give significant performance improve-
ments analogous to truncation sampling for GANs [2]. For
VQ3D, a top-k of 1000 and top-p of 1.0 give the best results.

Additional tuning of baselines. Although the strongest
baselines, EG3D [4] and StyleNeRF [7], perform poorly
on ImageNet, they may need to be tuned to perform well
on this new dataset. To verify that the limitation of the
baseline methods is fundamental, we extensively tune both
on Imagenet for a range of hyperparameters in Tables 3 and
4. We see the baselines do not achieve good performance for
a range of hyperparameter settings. Additionally, we observe
that EG3D has significant inter-run variance in terms of FID
on ImageNet, even when rerunning the same configuration,
which may indicate instability for large datasets such as
ImageNet. When running the same config multiple times,
we report the best value achieved among all runs.
Depth loss ablation. We compare our proposed pointwise
depth loss against a loss on accumulated depth in the ta-
ble below. Without Lpointwise, FID and especially Depth



EG3D Tuning Sweep ImageNet FID

R1 gamma {.3, .6} {82, 99}
Density reg. {.125, .25, .5} {91, 82, 96}
Disc. LR (1e-3) {.5, 1, 2, 4} {122, 82, 116, 113}
Gen. LR (1e-3) {.625, 1.25, 2.5, 5} {111, 82, 106, 136}

Table 3: Hyperparameter tuning of EG3D on ImageNet.

StyleNeRF Tuning Sweep ImageNet FID

R1 gamma {.15, .3, .6} {75, 73, 74}
Disc. LR (1e-3) {.625, 1.25, 2.5, 5} {96, 87, 73, 69}
Gen. LR (1e-3) {.625, 1.25, 2.5, 5} {78, 74, 73, 107}

Table 4: Hyperparameter tuning of StyleNeRF on ImageNet.

Accuracy (DA) quickly degrade as the novel view radius
increases. Such models do not infer realistic sharp surfaces,
but instead infer densities along camera rays which only sum
to plausible depths near the canonical viewpoint.

r = 0.0 r = 0.2 r = 0.4
Generation FID DA↓ FID DA↓ FID DA↓

Laccum 33.0 0.24 37.3 0.42 49.7 0.64
Lpointwise (ours) 32.5 0.16 35.4 0.16 41.1 0.18

Table 5: Depth loss ablation

These metrics are comparable to the ablations in Tables 2 &
3; we obtain our SOTA FID of 16.8 (Table 1) via the longest
possible training and most optimal sampling config.
Normals evaluation. For fairer geometry evaluation, we
evaluate the predicted normals via a version of Normal Con-
sistency (NC) from MonoSDF adapted to our setting, shown
in the table below. VQ3D has more accurate normals than
the baselines, although the gap is less pronounced than for
Depth Accuracy (c.f. Table 1).

Depth accuracy and StyleNeRF. We provide additional
details about depth accuracy for StyleNeRF. We designed a
depth loss described in the main paper which improved the
depth accuracy of EG3D, pi-GAN, and GIRAFFE without
compromising FID. However, we were unable to improve
the depth accuracy of StyleNeRF with depth losses. To shed
some light on this issue, we analyze the depth accuracy of
StyleNeRF models over a wide range of hyperparameter
settings in Table 7. Depth accuracies > 1.90 indicate depth
maps have collapsed to a flat plane. We see that the learn-
ing of geometry for StyleNeRF is unstable. On ImageNet,
geometry is not learned for most settings. Adding a depth
loss does not improve geometry, although 3 hyperparameter
settings (doubled batch size, slightly reduced discrimina-

Generation piGAN GIRAFFE EG3D StyleNeRF VQ3D

NC↑ 0.25 0.40 0.28 0.49 0.63

Table 6: Evaluation of normals.

StyleNeRF Tuning Sweep Depth Accuracy ↓

Depth loss weight {0, .5} {1.96, 2.00 }
Batch size {64, 128} {1.96, 1.64 }
R1 gamma {.15, .3, .6} {1.97, 1.96, 1.95}
Disc. LR (1e-3) {.625, 1.25, 2.5, 5} {1.95, 1.70, 1.96, 1.96}
Gen. LR (1e-3) {.625, 1.25, 2.5, 5} {1.97, 1.96, 1.96, 1.82}

Table 7: Depth accuracy for StyleNeRF.

tor LR, increased generator LR) improve depth accuracy
somewhat (to 1.64, 1.70, 1.82, respectively.) We note these
depth accuracies are not close to either EG3D with depth
loss (.88) or our model (.13). In general, whether or not
StyleNeRF learns geometry is highly sensitive to individual
hyperparameter settings.
Note on EG3D performance. Our EG3D FID was 82.2
but it is not directly comparable to superior FIDs reported
by concurrent work. The 3DGP authors train EG3D with
their proposed dataset filtering (removing around 2/3 of the
ImageNet training set). IVID’s EG3D FID is 40.4, but for an
easier task (128 resolution generation instead of 256). We
retrained EG3D to more closely match the IVID settings, in
particular the lower resolution, and obtain an FID of 51.4,
closing the majority (74%) of the gap. IVID further used
classes in lieu of poses for generator and discriminator pose-
conditioning, which might further close the gap.

3. Additional samples

We show additional uncurated generated samples with
geometry in Figure 3 and Figure 4.
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Figure 1: Samples from our synthesized MVS-1 dataset.
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Figure 3: Uncurated fully generated samples from our Stage 2 model.



Figure 4: More uncurated fully generated samples from our Stage 2 model.
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