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512-resolution
Device Name MI-GAN speed Co-Mod-GAN speed

(ms, mean/std) (ms, mean/std)

iPhone7 1855.60 / 29.69 6254.60 / 39.43
iPhoneX 1131.00 / 11.14 3943.33 / 55.89
iPad mini (5th gen) 1017.67 / 28.87 3767.71 / 95.72
iPhone14-pro-max 539.10 / 17.89 1880.00 / 55.92
Galaxy Tab S7+ 1210.50 / 30.84 - / -
Samsung Galaxy S8 2527.47 / 40.70 - / -
vivo Y12 5385.67 / 313.95 - / -

Table S.1: The actual speed of our 512 resolution model
vs Co-Mod-GAN [4] 512 resolution model deployed on
various mobile devices. The actual speed is measured in
miliseconds, the means and the standard deviations of the
speed are presented for each mobile device.

1. Network Architecture Details

In this section we present the architectural details of our
MI-GAN generator and discriminator.

Table S.4 presents the detailed layer architecture of 256
and 512 resolution MI-GAN models. As can be seen from
the table, our 512x512 model has one more downsampling
and upsampling layers compared to our 256 model. These
additional layers serve for two main purposes: first, they
help to decrease the computational cost and memory usage
with 512x512 inputs, and second, they increase the recep-
tive field of the network to better handle larger holes.

MI-GAN discriminator mainly consists of residual
blocks containing depthwise-separable convolution layers
and bilinear downsampling operations. Similar to the MI-
GAN generator, we apply re-parametrization trick to the
discriminator in order to increase the discriminative ability
of the network. All discriminator layers, except the skip
connection layers and the output layer, use leaky ReLU
activation function with α = 0.2. Activation functions
for residual connection layers and the output layer are lin-
ear. Similar to [2] we use a minibatch standard deviation
layer near the end of convolution layers of the discrimina-
tor. Please see Table S.5 for a more detailed representation
of the discriminator architecture.

2. 512 Model Speed on Mobile Devices

As can be noticed from Table S.1, on actual mobile de-
vices, with 512x512 inputs, our 512 resolution model runs
on average 3.5 times faster than the corresponding Co-Mod-
GAN [4] model. On some test devices Co-Mod-GAN failed
to run due to a memory error. The fact that our 512 resolu-
tion model can run on various mobile devices, with a rea-
sonable speed and almost state-of-the-art quality, make it
feasible to be used in real-world applications.

3. More Quantitative Results

In addition to quantitative comparisons done in the pa-
per, this section presents extra metrics which show the ro-
bustness of our approach to different mask sizes and met-
ric selections. Table 2 presents FID metrics calculated on
different mask area ranges for Places 2 [5] and FFHQ [1]
datasets. The results show that our method is comparable
or sometimes better than other SOTAs for large as well as
for small mask ratios. Table 3 presents the PSNR, SSIM
[3], P-IDS and U-IDS [4] metrics calculated on Places 2
and FFHQ datasets. The table shows that MI-GAN is com-
parable or better according to those metrics as well.

4. More Qualitative Results

In this section we present additional set of qualitative re-
sults of our model in comparison with the results of state-
of-the-art approaches. These results additionally support
the claims made in Section 4.3 of the paper. Figure S.1
compares MI-GAN results with other approaches results on
256x256 resolution Places 2 [5] images. Figures S.2 and S.3
show more results on 512x512 resolution Places 2 images.
Figures S.4 and S.5 provide more results on FFHQ dataset
[1] samples. Figures S.6 and S.7 present additional results
with object masks. Figure S.8 includes more samples from
our user study.

5. Failure Cases

As mentioned in the Section 5 of the paper, our approach
meets difficulties when it comes to reconstructing complex
3D scenes. In Figure S.9 we present sample results of such



Places 2 (512x512) FFHQ (256x256)
Mask area range Mask area range

Method (0, .2) (.2, .4) (.4, .6) (.6, .8) (.8, 1) (0, .2) (.2, .4) (.4, .6) (.6, .8) (.8, 1)

LDM 0.29 1.37 3.89 9.72 21.92 - - - - -
SH-GAN 0.32 1.60 4.22 8.35 13.64 0.68 1.85 3.03 4.32 5.63
Co-Mod-GAN 0.34 1.79 4.80 9.74 15.45 0.69 1.91 3.27 4.76 6.22
MAT 0.40 1.75 4.67 10.36 19.10 0.58 1.92 3.95 6.99 10.35
ZITS 0.32 1.54 4.74 13.88 39.78 - - - - -
LaMa 0.29 1.84 6.42 18.35 46.23 0.58 1.92 3.95 6.99 10.35
HiFill 0.92 8.16 34.02 85.19 128.20 - - - - -

MI-GAN (ours) 0.36 2.03 5.74 12.19 20.51 0.71 1.99 3.38 5.04 6.55

Table 2: FID comparison with varying mask area ranges on Places2-512 and FFHQ-256. The table shows that our approach
is comparable to SOTA heavy approaches on both datasets and better than HiFill on all mask area ranges.

Places 2 (512x512) FFHQ (256x256)
Method PSNR ↑ SSIM ↑ P-IDS ↑ U-IDS ↑ PSNR ↑ SSIM ↑ P-IDS ↑ U-IDS ↑
LDM 16.106 0.605 0.083 0.237 - - - -
SH-GAN 16.014 0.597 0.149 0.286 16.357 0.591 0.154 0.272
Co-Mod-GAN 15.985 0.595 0.120 0.266 16.247 0.591 0.137 0.262
MAT 15.934 0.597 0.104 0.249 17.080 0.627 0.041 0.170
ZITS 18.131 0.657 0.033 0.171 - - - -
LaMa 17.950 0.655 0.020 0.143 17.585 0.628 0.002 0.015
HiFill 15.599 0.544 0.002 0.044 - - - -

MI-GAN (ours) 16.118 0.597 0.091 0.234 16.315 0.590 0.119 0.239

Table 3: Additional metrics on Places2-512 and FFHQ-256. Results show that, according to PSNR, SSIM, P-IDS and U-IDS
metrics, our approach is still comparable or better than bigger and slower SOTA methods. Our approach is better than HiFill
on all qualitative metrics in comparison.

failure cases. For example, in the first column of the fig-
ure, our model fails to reconstruct the billiard table and the
tennis table, and in the second column our model fails to
realistically complete the telephone booth.
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Table S.4: MI-GAN generator architecture details. dw-sep denotes the depthwise-separable layer described in Section 3.1
of the paper. Notations ds and us mean bilinear downsample and bilinear upsample respectively. Notation noise indicates
that noise addition is being applied inside the depthwise separable convolution block. torgb layers are conv1×1 layers with
linear activation functions. Those layers form a parallel branch, the Painting branch, which converts deep features into RGB
images, and aggregates the results through bilinear upsampling and element-wise addition, as presented in the paper.

Input resolution 256 resolution model 512 resolution model

E
nc

od
er

512× 512

conv1×1 (4 → 64)
dw-sep 3× 3 (64 → 64)
dw-sep 3× 3 (64 → 128, ds)

256× 256

conv1×1 (4 → 128)
dw-sep 3× 3 (128 → 128) dw-sep 3× 3 (128 → 128)
dw-sep 3× 3 (128 → 256, ds) dw-sep 3× 3 (128 → 256, ds)

128× 128
dw-sep 3× 3 (256 → 256) dw-sep 3× 3 (256 → 256)
dw-sep 3× 3 (256 → 512, ds) dw-sep 3× 3 (256 → 512, ds)

64× 64
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

32× 32
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

16× 16
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

8× 8
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

4× 4
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)

D
ec

od
er

4× 4

dw-sep 3× 3 (512 → 512, noise) dw-sep 3× 3 (512 → 512, noise)
dw-sep 3× 3 (512 → 512, noise) dw-sep 3× 3 (512 → 512, noise)
torgb (512 → 3) torgb (512 → 3)

8× 8

dw-sep 3× 3 (512 → 512, us, noise) dw-sep 3× 3 (512 → 512, us, noise)
dw-sep 3× 3 (512 → 512, noise) dw-sep 3× 3 (512 → 512, noise)
torgb (512 → 3) torgb (512 → 3)

16× 16

dw-sep 3× 3 (512 → 512, us, noise) dw-sep 3× 3 (512 → 512, us, noise)
dw-sep 3× 3 (512 → 512, noise) dw-sep 3× 3 (512 → 512, noise)
torgb (512 → 3) torgb (512 → 3)

32× 32

dw-sep 3× 3 (512 → 512, us, noise) dw-sep 3× 3 (512 → 512, us, noise)
dw-sep 3× 3 (512 → 512, noise) dw-sep 3× 3 (512 → 512, noise)
torgb (512 → 3) torgb (512 → 3)

64× 64

dw-sep 3× 3 (512 → 512, us, noise) dw-sep 3× 3 (512 → 512, us, noise)
dw-sep 3× 3 (512 → 512, noise) dw-sep 3× 3 (512 → 512, noise)
torgb (512 → 3) torgb (512 → 3)

128× 128

dw-sep 3× 3 (512 → 256, us, noise) dw-sep 3× 3 (512 → 256, us, noise)
dw-sep 3× 3 (256 → 256, noise) dw-sep 3× 3 (256 → 256, noise)
torgb (256 → 3) torgb (256 → 3)

256× 256

dw-sep 3× 3 (256 → 128, us, noise) dw-sep 3× 3 (256 → 128, us, noise)
dw-sep 3× 3 (128 → 128, noise) dw-sep 3× 3 (128 → 128, noise)
torgb (128 → 3) torgb (128 → 3)

512× 512

dw-sep 3× 3 (128 → 64, us, noise)
dw-sep 3× 3 (64 → 64, noise)
torgb (64 → 3)



Table S.5: MI-GAN discriminator architecture details. dw-sep denotes the depthwise-separable convolution layer described
in Section 3.1 of the paper. Notation ds indicates the bilinear downsampling operation. skip is a 1×1 convolutional layer with
a linear activation, through which a direct residual connection is made between each resolution block input and its output. We
combine residual features and block output features through element-wise addition. mbstd denotes the minibatch standard
deviation layer.

Input resolution 256 resolution model 512 resolution model

D
is

cr
im

in
at

or

512× 512

conv1×1 (4 → 64)
skip (64 → 128, ds)
dw-sep 3× 3 (64 → 64)
dw-sep 3× 3 (64 → 128, ds)

256× 256

conv1×1 (4 → 128)
skip (128 → 256, ds) skip (128 → 256, ds)
dw-sep 3× 3 (128 → 128) dw-sep 3× 3 (128 → 128)
dw-sep 3× 3 (128 → 256, ds) dw-sep 3× 3 (128 → 256, ds)

128× 128

skip (256 → 512, ds) skip (256 → 512, ds)
dw-sep 3× 3 (256 → 256) dw-sep 3× 3 (256 → 256)
dw-sep 3× 3 (256 → 512, ds) dw-sep 3× 3 (256 → 512, ds)

64× 64

skip (512 → 512, ds) skip (512 → 512, ds)
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

32× 32

skip (512 → 512, ds) skip (512 → 512, ds)
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

16× 16

skip (512 → 512, ds) skip (512 → 512, ds)
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

8× 8

skip (512 → 512, ds) skip (512 → 512, ds)
dw-sep 3× 3 (512 → 512) dw-sep 3× 3 (512 → 512)
dw-sep 3× 3 (512 → 512, ds) dw-sep 3× 3 (512 → 512, ds)

4× 4
mbstd (512 → 513) mbstd (512 → 513)
dw-sep 3× 3 (513 → 512) dw-sep 3× 3 (513 → 512)
flatten (512× 4× 4 → 8192) flatten (512× 4× 4 → 8192)
fc (8192 → 512) fc (8192 → 512)
fc (512 → 1) fc (512 → 1)



Masked Image LaMa Co-Mod-GAN SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure S.1: Example results of our 256 resolution model and other state of the art approaches on 256x256 resolution Places2
samples using free-form masks.



Masked image LaMa Co-Mod-GAN SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure S.2: Example results of our 512 resolution model and other state of the art approaches on 512x512 resolution Places2
samples using free-form masks. Please zoom for a better view.



LaMaMasked image Co-Mod-GAN SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure S.3: Example results of our 512 resolution model and other state of the art approaches on 512x512 resolution Places2
samples using free-form masks. Please zoom for a better view.



LaMaMasked image Co-Mod-GAN SH-GAN MAT MI-GAN (ours)

Figure S.4: Example results of our 256 resolution model and other state of the art approaches on 256x256 resolution FFHQ
samples using free-form masks.



LaMaMasked image Co-Mod-GAN SH-GAN MAT MI-GAN (ours)

Figure S.5: Example results of our 256 resolution model and other state of the art approaches on 256x256 resolution FFHQ
samples using free-form masks.



LaMaMasked image Co-Mod-GAN SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure S.6: Additional results of our 512 resolution model and other approaches using object masks



Masked image LaMa Co-Mod-GAN SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure S.7: Additional results of our 512 resolution model and other approaches using object masks.



Masked image Xiaomi Redmi Note 8 Samsung Galaxy S22 OnePlus 10 Pro Huawei P50 Pro MI-GAN (ours)Google Pixel 6

Figure S.8: More results from our user study. Zoom-in to compare the details.



Masked image

MI-GAN (ours)

Original (GT)

Figure S.9: Failure cases of our approach.


