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Abstract

In the supplemental material, we provide additional de-
tails about the following:

1. Visualisation on point cloud mosaicking given multiple
individual observations (Section A),

2. Comparison to a retrieval-based approach (Section B),

3. Additional ablation on SGAligner to further understand
the performance of node matching (Section C),

4. Information on the SGAligner benchmark, including de-
tails on the generated data, evaluation protocol, and
metrics (Section D), and

5. Details on implementation (Section E).

A. Application: Point Cloud Mosaicking

In Section 4.3 of the main paper, we demonstrate the po-
tential of SGAligner on 3D point cloud mosaicking. Here,
two success cases are shown in Figure 1 and a failure in
Figure 2 (the graphs are shown simplified for visualisation
purposes and do not represent the entire available graph).

B. Application: Finding Overlapping Scenes

In the main paper, we discussed that SGAligner provides
less than O(N2) computation complexity when addressing
the task of registering multiple 3D scenes for which we have
no knowledge of whether they overlap or not. Another ap-
proach to avoid full registration on all pairs (standard reg-
istration methods), is to use a retrieval-based approach. We
consider the following approach as baseline: (i) extract lo-
cal 3D keypoints for all available 3D point clouds [15]; (ii)
generate a 3D descriptor per extracted keypoint [9]; (iii) ac-
cumulate the 3D keypoint descriptors into a global descrip-
tor for each point cloud [4], and (iii) perform kNN search

to rank global descriptors based on the queried one. Simi-
larly here, this experiment serves as a demonstration of the
potential of SGAligner and does not aim to solve the task.

Specifically, given a point cloud, we extract keypoints
from the entire scene based purely on geometry and with-
out any notion of object-ness or semantics. We randomly
select 500 keypoints and their descriptors per scene, which
we use to train [4] so as to generate optimized global de-
scriptors. During inference and given a query point cloud
and its corresponding global descriptor, we perform a kNN
search to identify the closest neighbors of it in the rest of
the point clouds. We evaluate on Mean Reciprocal Rank
(MRR) and compare with SGAligner.

Results are shown in Table 1. We evaluate on differ-
ent point cloud densities, ranging from using the full point
cloud density offered in [10] to random subsampling for 10,
20, 30, and 50%. Please note that in SGAligner, we do not
use the entire scene, only objects in the scene graph. As
described in the main paper, we downsample object point
clouds using farthest point sampling to 512 points. We fol-
low the same protocol here and perform this operation per
subsampled scene level.

As expected, the retrieval-based method is performing
well when there is a dense point cloud, since our method
employs a limited amount of points per object instance.
However, VLAD+KNN cannot retain a robust performance
when density decreases, already reaching lower perfor-
mance than SGAligner at 10% subsampling. In contrast,
our approach is barely affected by a changing density since
it already operates on lower-resolution point clouds. This
showcases that the topological information encoded in 3D
scene graphs can lead to more robust results when deal-
ing with common failure cases in global descriptors (i.e.,
changes in point cloud density).

https://sayands.github.io/sgaligner/


Figure 1. Qualitative Results on Point Cloud Mosaicking. Given partial point clouds of a scene and the corresponding 3D scene graphs,
we showcase two example results on Point Cloud Mosaicking and the creation of a unified scene graph using the methodology discussed
in Section A. The solid lines show the relationships between objects and dashed lines represent the ground truth entity pairs F .



Figure 2. Failure on Point Cloud Mosaicking. Similar to the success cases in Fig. 1, we also showcase a failure case of our approach
on point cloud mosaicking. The solid lines show the relationships between objects and dashed lines represent the ground truth entity pairs
F . The red circle on the ground truth point cloud depicts the area where the failure is the most visible and red arrow demonstrates the
misalignment of SGAligner between a sink and a floor.

Subsampling % VLAD + KNN SGAligner

0 0.557 0.383
10 0.316 0.356
20 0.276 0.343
30 0.222 0.339
50 0.162 0.312

Table 1. Mean Reciprocal Rank (↑) comparison with a
retrieval-based approach. Best results per subsampling level are
in bold. Overall best in underlined bold.

C. Additional Ablation Studies

C.1. Analysis with Various Object Encoders

In our experiments, we choose PointNet [7] as our en-
coder because it is commonly employed in most scene
graph methods [11], [13], [14]. Pointnet has been shown
to perform in real-time scenarios [1], which makes it suit-
able for mobile robot applications. In Table 2, we present a
comparison of object encoders, on the node matching task.
Point Cloud Transformer (PCT) [2], being inherently per-

mutation invariant to an unordered point cloud, shows an
improvement in the metrics. These results also showcase
that our method is robust and agnostic to the 3D visual en-
coder.

Encoder Mean Hits @ ↑
RR ↑ K = 1 K = 2 K = 3 K = 4 K = 5

PointNet [7] 0.950 0.923 0.957 0.974 0.982 0.987
PCT [2] 0.965 0.947 0.968 0.983 0.988 0.991

Table 2. Comparison on node matching of SGAligner using
various object encoders. Best values are in bold.

C.2. Intra-Graph Alignment Recall

To further validate how our model performs on align-
ing nodes between two 3D scene graphs (source-reference)
with no/partial overlap, we formulate Intra-Graph Align-
ment Recall (IGAR) metric. It measures what fraction of
the nodes in the source graph are aligned (K=1), with nodes
in the same source graph or, in other words, how many node
matches out of total are self-aligned. We provide these
results in Table 3. We do not explicitly model not self-
matching nodes within the same graph, yet, IGAR values



stand to show that our method rarely performs this.

IGAR =
1

M

∑
M

|pred{ni ≡ nj}|
|F|

, n ∈ N (1)

where, i ̸= j, pred{ni ≡ nj} is the set of nodes in
the graph which SGAligner aligned with nodes in the same
graph, F is the set of ground truth anchor pairs and N de-
notes the set of objects in a single graph and M is the total
number of graphs.

Method IGAR ↓ (%)

P 16.9
P + S 16.5

P + S + R 13.1
SGAligner 8.2

Table 3. Evaluation on node self-alignment. SGAligner has not
been explicitly modeled to not create self-matches but still is able
to differentiate between nodes from the same and different graphs.

C.3. Confusion Matrix

We compute a confusion matrix to identify which ob-
ject categories are most frequently misaligned during en-
tity alignment and if our method fails on certain seman-
tic classes (e.g., chair, table, etc). In Figure 3, we show
the confusion matrix on all 4 module combinations of
SGAligner. As expected, the object encoder module P ,
although performing well, confuses the most the wall and
floor classes. This is due to the fact that purely on a se-
mantic level, without encoding any positional/structural in-
formation, these classes are similar. We can further observe
that SGAligner is robust to certain classes like pillow, tv,
lamp, etc. Classes like wall, floor, and fridge are the ones
easily susceptible to misalignment on the tested dataset, al-
beit less than in P .

C.4. Robustness to Missing Geometric Information

In this section, we provide an ablation study of
SGAligner on the 3D Scene Graph alignment task and eval-
uate how it performs on node alignment, when all the geo-
metric relationships encoding positional information be-
tween the nodes such as left and standing on are
missing. Results are in Table 4. As expected, the structure
module S suffers from this compared to the full ground-
truth experiment, since the number of edges encoded in the
neighborhood of an entity gets reduced. However, overall,
our method does not show a drastic drop in node alignment
metrics due to the absence of geometric relationships. This
can be attributed to the fact that we do not discriminate be-
tween different types of relationships in our encoders, how-
ever, this is a very important robustness characteristic, es-
pecially, while working with predicted scene graphs where

the relationships could be missing or incorrectly labelled.
This also shows that once trained with full ground truth,
our method is able to handle missing data during inference
which would be useful for a navigation agent.

Modalities Mean Hits @ ↑
RR ↑ K = 1 K = 2 K = 3 K = 4 K = 5

P 0.884 0.835 0.886 0.921 0.938 0.951
P + S 0.880 0.830 0.882 0.918 0.936 0.948

P + S + R 0.893 0.844 0.898 0.933 0.949 0.959
SGAligner 0.948 0.921 0.952 0.971 0.979 0.985

Table 4. Evaluation on node matching. We compare the perfor-
mance of SGAligner for different modality combinations, when
all geometric edges are missing.

D. SGAligner Benchmark
In this section, we offer qualitative explanations on our

dataset generation procedure and discuss the evaluation
metrics used to asses performance with respect to the vari-
ous tasks we reported.

D.1. Dataset

In Sec. 4 of the main paper, we provide a description
of the data generation procedure. In Figure 4, we report
statistics on the spatial overlap of the generated pairs. We
show examples of sub-scenes generated using this approach
in Figure 5, alongside the camera trajectory used to capture
the corresponding scan in [10]. We will make our code and
benchmark public.

D.2. Evaluation Metrics

The evaluation metrics that we use to assess performance
in Section 4.1 of the main paper, as well as in this supple-
mentary material, are formally defined in this section.

D.2.1 Alignment Metrics

Inspired by works in multi-modal entity alignment [5], we
define our alignment metrics as follows :

Hits @ K represents the fraction of true anchor entities
present in the top k predictions :

Hk(r1, ..., rn) =
1

n

n∑
i=1

I[ri ≤ k] (2)

where, I[x ≤ y] = 1 when x ≤ y else 0 and
k ∈ [1, 2, 3, 4, 5].

Mean Reciprocal Rank (MRR) corresponds to the
arithmetic mean over the reciprocals of ranks of true triples.



Figure 3. Object Confusion Matrices of the 4 module combinations of SGAligner: object encoder (P), object and structure encoders
(P + S), object, structure and relationship encoders (P + S +R), and the proposed method with all modules (SGAligner). High values
indicate that an object (denoted on y-axis) is often recognized as the object denoted on x-axis – everything but the diagonal should be 0.



Figure 4. Overlap statistics for the generated sub-scenes.

MRR(r1, ..., rn) =
1

n

n∑
i=1

r−1
i (3)

D.2.2 Registration Metrics

Feature Matching Recall (FMR) [3][8] measures the frac-
tion of point cloud pairs for which, based on the number
of inlier correspondences, it is likely that accurate transfor-
mation parameters can be recovered with a robust estimator
such as RANSAC. It should be noted that FMR simply ver-
ifies whether the inlier ratio (IR) is higher than a threshold
T = 0.05. It does not examine if the transformation can ac-
tually be inferred from those correspondences, which is not
always the case because of the possibility that their geomet-
ric arrangement is (almost) degenerate, such as when they
are situated closely together or along a straight edge.

FMR =
1

M

M∑
i=1

JIRi > T K (4)

where M is the number of all point cloud pairs.
Registration Recall (RR) is the fraction of registered

point cloud pairs for which the transformation error is
smaller than 0.2m. The transformation error is the root
mean squared error of the ground truth correspondence H∗

after applying the predicted transformation TP→Q.

RMSE =

√√√√ 1

|H∗|
∑

(p∗
xi

,q∗yi
)∈H∗

||TP→Q(p∗xi
)− q∗yi

||22

(5)

RR =
1

M

∑
i=1

JRMSEi < 0.2mK (6)

Relative Rotation Error (RRE) is the geodesic distance in
degrees between estimated and ground-truth rotation matri-
ces.

RRE = arccos(
trace(RT · R̄− 1)

2
) (7)

Relative Translation Error (RTE) is the the euclidean dis-
tance between estimated and ground-truth translation vec-
tors.

RTE = ||t− t̄|| (8)

We compute mean RRE and RTE between all the regis-
tered point cloud pairs.
Chamfer Distance measures the quality of registration.
Following [12], [3], we use the modified Chamfer distance
metric :

C̄D(P,Q) =
1

|P |
∑
p∈P

minq∈Qraw
||TP

Q(p)− q||22+

1

|Q|
∑
q∈Q

minp∈Praw
||q − TP

Q(p)||22
(9)

where, Praw and Qraw are raw/clean source and target
point clouds respectively.

D.2.3 Reconstruction Metrics

The definition of full 3D reconstruction metrics is provided
in Table 5.

Metric Definition

Acc meanp∈P (minp∗∈P∗ ||p− p∗||)
Comp meanp∗∈P∗(minp∈P ||p− p∗||)

Precision meanp∈P (minp∗∈P∗ ||p− p∗|| < 0.05)

Recall meanp∗∈P∗(minp∈P ||p− p∗|| < 0.05)

F1-Score 2∗precision∗recall
precision+recall

Table 5. 3D Reconstruction Metric Definitions. p and p∗ are
ground truth and predicted point clouds respectively.

E. Implementation Details
Inspired by MCLEA [5], we use a multi-layered GAT

with 2 layers and each hidden unit being 128-dimensional.
All the modules output a 100-dimensional embedding and
the joint embedding, being a weighted concatenation, is
400-dimensional. We use T1 for ICL loss as 0.1 and T2
for IAL loss as 1.0. We train our model for 50 epochs on
a NVIDIA GeForce RTX 3060 Ti 8GB GPU with a batch
size of 4 using AdamW [6] optimizer and a learning rate of
0.001.
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