
1. Supplementary Material

1.1. Ablation

To understand the effects of the augmentations chosen,
we carry out another ablation study, first breaking down the
augmentations into three categories; weather, image degra-
dation and positional augmentation, where weather also
contains time-related augmentations. We use Robust-Depth
to train individual models, selecting just the augmentations
from each category. The results of each of these models,
when tested on both the sunny and bad weather data, are
shown in Table 1. Robust-Depth uses a CNN-based archi-
tecture throughout the experiments in Tables 1 and 2. An
interesting finding of this study is that positional augmen-
tations seem to significantly improve the capability of the
depth network on unaugmented images. This signifies that
the positional augmentations are helping the network de-
velop a wider variety of cues to estimate depth.

Method Tests Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Robust-Depth Sunny 0.115 0.937 4.840 0.873 0.959 0.981
Bad w. 0.133 1.115 5.259 0.842 0.948 0.977

Weather Sunny 0.120 0.889 4.845 0.864 0.958 0.981
Bad w. 0.145 1.089 5.512 0.808 0.935 0.974

Img. degradation Sunny 0.123 1.000 5.049 0.860 0.954 0.979
Bad w. 0.181 1.654 6.512 0.741 0.900 0.953

Positional aug. Sunny 0.111 0.897 4.740 0.884 0.961 0.982
Bad w. 0.301 3.002 9.268 0.510 0.760 0.878

Table 1. Ablation 2: We split the augmentations into three cate-
gories; weather, corruption and positional augmentations. Each
uses pretrained ImageNet [3] weights and a data resolution of
640×192.

As would be expected, positional augmentations does
not help the network with other domains or lead to greater
overall robustness. Furthermore, the bad weather test,
which contains weather and image degradation augmenta-
tions, sees the greatest benefit when training with all aug-
mentations. Indicating that no single augmentation is most
beneficial for multiple domains.

Method Tests Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Vertical Sunny 0.120 0.995 4.949 0.868 0.957 0.980
Bad w. 0.288 3.194 8.597 0.555 0.790 0.901

Tile Sunny 0.117 0.901 4.819 0.871 0.958 0.981
Bad w. 0.313 3.184 9.475 0.497 0.748 0.875

Rand. Erase Sunny 0.119 0.985 4.953 0.871 0.957 0.980
Bad w. 0.256 2.368 7.967 0.589 0.819 0.921

Scale Sunny 0.119 1.040 4.937 0.869 0.958 0.981
Bad w. 0.300 3.022 8.927 0.525 0.769 0.884

Table 2. Ablation 3: We further break down positional augmen-
tations into vertical cropping, tiling cropping, random erase and
scaling. Each uses pretrained ImageNet [3] weights and a data
resolution of 640×192.

We now further explore each subcategory. We break po-
sitional augmentations into its components; vertical crop-
ping, tiling, random erase and scaling. Table 2 demon-
strates that each individual positional augmentation does
not lead to an improved performance for depth estimation
when compared to the baseline of Monodepth2 [5]. We
believe these positional augmentations largely benefit from
each other, and an over-reliance on each individual augmen-

tation leads to the worsening of the depth network’s stan-
dard cues.

Another interesting finding shown in Table 2, is that tile
cropping augmentation gives rise to the lowest sunny er-
ror, suggesting that a greater local region understanding is
the most beneficial feature of positional augmentation, at
least for a CNN-based backbone. On top of that, random
erase leads to the best robust performance for bad weather
testing. This is because random erase aims to improve the
model’s capabilities with occlusion, and many weather and
corruption-related augmentations would benefit from this.

1.2. Eigen Benchmark

We provide the test results from the KITTI dataset with
the improved ground truth data. The improved ground truth
results, shown in Table 3, look very similar to Table 2 from
the main paper. Robust-Depth can maintain sunny depth
quality while improving the quality on the bad weather test
set. In other words, it is more robust to weather changes and
image degradation while maintaining capabilities in sunny
scenes. Furthermore, Robust-Depth∗, uses MonoViT [16]
as a backbone and shows greater overall performance for
bad weather testing yet competitive performance for the
sunny test.

Method Tests Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [5] Sunny 0.090 0.545 3.942 0.914 0.983 0.995
Bad w. 0.223 2.136 7.464 0.654 0.850 0.931

HR-Depth [7] Sunny 0.085 0.471 3.769 0.919 0.985 0.996
Bad w. 0.251 2.331 8.093 0.590 0.814 0.912

CADepth [14] Sunny 0.080 0.450 3.649 0.927 0.986 0.996
Bad w. 0.243 2.252 7.761 0.611 0.824 0.919

DIFFNet† [17]
Sunny 0.076 0.412 3.494 0.935 0.988 0.996
Bad w. 0.183 1.542 6.842 0.717 0.888 0.949

MonoViT [16] Sunny 0.075 0.389 3.419 0.938 0.989 0.997
Bad w. 0.148 1.133 5.931 0.785 0.930 0.972

Robust-Depth Sunny 0.091 0.579 3.975 0.912 0.981 0.994
Bad w. 0.110 0.777 4.511 0.879 0.969 0.990

Robust-Depth∗ Sunny 0.077 0.417 3.548 0.932 0.988 0.997
Bad w. 0.093 0.583 4.130 0.904 0.979 0.994

Table 3. Eigen improved ground truth test: All tests are per-
formed at a resolution of 640×192 and pretrained with ImageNet
[3] weights.

1.3. Qualitative results

To show how our model can handle changes in do-
mains, we also present qualitative results from some out-
of-distribution data. Specifically, we will be looking at
DrivingStereo [15], Foggy CityScape [11, 2] and Nuscenes-
Night [1].

Figure 1 clearly demonstrates the visual improvements
in our method compared with Monodepth2 and MonoViT.
Our method learns to ignore fog in scenes and predict realis-
tic depth. Methods like Monodepth2 display poor depth es-
timations in foggy scenes, and even current SotA models are
unable to reconstruct sharp edges around objects when in
the foggy domain. Robust-Depth generalises to this dataset
and solves both issues without seeing this dataset.

In Figure 2, we evaluate our method in the nighttime do-
main. We see this is a much more challenging domain due



Figure 1. Demonstrating the qualitative results on the Foggy CityScape test dataset.

Figure 2. Demonstrating the qualitative results on the NuScenes Night test dataset.

to illuminations and lack of texture changes. Nevertheless,
results indicate that our model can more clearly see objects
and infer smoother surfaces.

Furthermore, we look at the DrivingStereo dataset with
all four domains; sunny, rainy, foggy and cloudy in Figure
3. Clear and significant improvements can be seen when

comparing Robust-Depth to Monodepth2. Also, the differ-
ence between MonoViT and our Robust-Depth∗ shows finer
advancements in all presented qualitative results. Most im-
provements with this backbone involve finer details in edge
definition and smoother depth maps.

Further qualitative results on the KITTI Eigen test are



Figure 3. A demonstration of the qualitative results from the DrivingStereo test dataset.

shown in Figures 8 and 9. These figures show the collection
of augmentations used during the training of our method.
Here we notice significant improvements from each aug-
mentation, especially when looking at rain-related images,
compared to Monodepth2. Interestingly, Robust-Depth re-
moves dependence on colour channels and colour overall.
Also, when looking at Gaussian/impulse/shot noise, we wit-
ness remarkable improvements when using both backbones
from our method.

We can also explore the understanding of these depth
networks in how they hallucinate depth from a single im-
age based on our results. We observe that:

• Colour channels are not vital in determining depth
(Figure 9 row four)

• Robust-Depth does not need to rely on vertical cues
(Figure 8 row one, column four)

• Robust-Depth can handle occlusions (Figure 8 rows
one, column three)

• Robust-Depth can understand texture changes (Figure
8 rows two-five)

We show that we can infer depth from a very wide variety of
images and not significantly negatively affect depth perfor-

mance. Giving evidence that our model uses a much wider
assortment of cues for monocular depth estimation.

1.4. Bi-directional pseudo-supervised depth loss:

The pseudo-supervised depth loss, as discussed in the
main text, allows our augmented and unaugmented depths
to pseudo-supervise each other. In this section, we will dis-
cuss the effects of each depth estimation on the final loss. In
the beginning stages of learning the model capitalises on the
use of two depth maps to learn depth faster, as augmented
images are a view of the same image with variations in tex-
ture, shading and illumination patterns. The depth maps
teach each other and result in faster learning. In Figure 4,
we visualise the masks described in equations 8 and 9 from
the main text, multiplied by the depth.

For the first column, Dt ⊙Mv is the unaugmented depth
pixels that result in the lowest reprojection error. On the
other hand, D̃t ⊙ Ma is the augmented depth pixels that
result in the lowest reprojection error. We see throughout
training that the unaugmented depth is moderately more
accurate than the augmented depth estimation. This sug-
gests that unaugmented depth will have a larger weight
to the bi-directional depth loss throughout training. How-
ever, augmented depth will still hold a significant influence
as many pixels of the augmented depth estimation lead to



Figure 4. Depth masks Dt⊙Mv and D̃t⊙Ma are both shown for
epoch one and epoch thirty out of thirty epochs.

greater reprojections (row three), encouraging the use of a
bi-directional depth loss.

1.5. Practicalities of vertical cropping and tiling

As discussed in the introduction, vertical and tile crop-
ping help the depth network to remove pixel positional de-
pendencies and learn that the lower sections of an image
are not always close to the camera. In Figure 5, we see two
examples of cliff-side edges, in both scenarios, it would be
dangerous to assume that the pixels closest to the ground
represent the road. When using our vertical/tile cropping we

Figure 5. Image from column one [10] and image from column
two [9] demonstrates that Robust-Depth∗ is more likely to assume
large gradient changes than previous methods

can observe improvements in the understanding of depth.
As the network is not over-reliant on vertical cues, it can
assume that there are large gradient changes over walls.

1.6. Limitations

There are still many limitations to self-supervised
monocular depth estimation. As we know from [4] self-
supervised monocular depth relies on many naive cues,
specifically when looking at Figure 6, we see that in night-
time scenes, our method, as well as the current state-of-the-
art methods, cannot accurately detect vehicles. We believe
this is because these methods use the shadows under the
vehicles to determine the object’s depth [4], and with night-
time scenes, this cue cannot be relied upon. When we use
CoMoGAN [8] to generate nighttime augmentations, we
see that, although realistic, the night scene maintains some
shadow structures underneath the cars. To improve upon
this flaw in the future, the method of augmentation chosen
can focus on recreating even harsher nighttime scenes, re-
moving any indication of shadows underneath the vehicle.

Moreover, even with the use of vertical cropping and
tiling (section 1.5), there is still a lack of understanding of
large distance change (see Figure 5). This is an area for
future work.

Figure 6. Vehicles disappearing in dark scenes.

Furthermore, due to the over-reliance on the KITTI
dataset, we overfit on tree structures. Figure 7 shows that
the lampposts are being reconstructed as trees because the
KITTI dataset has many examples of trees and fewer exam-
ples of tall lampposts. A simple solution to this problem is
to train on a greater variety of data.

From Figure 7, we can also see that there are reflections



Figure 7. Trees forming out of lampposts and reflections causing
errors. The depth map is generated using Robust-Depth∗.

caused by the rain, leading to the depth network inferring
depth on the reflected lamppost. This, although a simple-
looking problem, requires a sophisticated understanding of
the scene and reflections themselves. A potential solution
from an augmentation perspective is to use more realistic
GANs that facilitate the creation of wet scenes that contain
many reflections.

1.7. Data creation

As discussed in the main text, we generate any compu-
tationally expensive augmentations before training, which
speeds up the training process. However, depending on the
augmentations chosen, our method could be trained end-to-
end. For example, vertical cropping, tiling, random erase,
colour jitter, horizontal flips and scaling are all randomised

and applied during training. On the other hand, we create
dusk, dawn and night version of the KITTI dataset using
CoMoGANs pretrained model. Furthermore, we create a
realistic rainy version of the KITTI dataset using a physics-
based render [13] and a GAN trained on the NuScenes rainy
data. The GAN [18] converts the KITTI images from clear
to rainy, creating reflections, rain on the camera, and creat-
ing desaturated scenes. Then, we apply the physics-based
render, where we specify a volume of rainfall per KITTI
scene which will be described on the project’s GitHub page.
Also, using the physics base renderer, we create foggy
scenes, which have parameters of beta set to random for
training and set to 1 for all test images.

At this point, we create all combinations of the aug-
mented data, as follows: Dusk, Dawn, Night, Rain,
Fog, Rain+Fog, Rain+Dawn, Rain+Night, Rain+Dusk,
Fog+Night, Fog+Dusk, Fog+Dawn, Rain+Fog+Night,
Rain+Fog+Dawn and Rain+Fog+Dusk. We also add mo-
tion blur as it can negatively affect self-supervised depth
estimation, as well as ground snow to represent more ex-
treme weather. Both of these augmentations were created
using the Automold GitHub page [12], and the severity of
the augmentations were set to random for training but max
severity for the test data. Note that the Bad weather test
contains augmentations from weather, time of day and im-
age degradation, but no positional augmentations. To cre-
ate the corrupted data, we directly use the code provided
by [6]. Here we set the severity of each corrupted image
to the maximum for testing data, but random for the train-
ing data. Finally, we create simple greyscale, red, green
and blue components of the images. All of these augmen-
tations are set to have a uniform distribution of being se-
lected, without replacement, so each augmentation is sam-
pled equally during training. The augmented data repre-
sents half of the data seen during training and each aug-
mentation has a 1/n chance of being selected, where n is the
number of augmentations chosen. All the information pro-
vided should aid with the reproducibility of this work and
potential further development. We highlighted in Figure 8
and Figure 9 a multitude of cases, that clearly demonstrate
the improvements of our model (Robust-Depth) over Mon-
odepth2 (MD2).
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