
R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras
Supplementary Material

Aron Schmied1* Tobias Fischer1* Martin Danelljan1 Marc Pollefeys1,2 Fisher Yu1

1 ETH Zürich 2 Microsoft
https://www.vis.xyz/pub/r3d3/

This supplementary material provides further details on
our method, our experimental setup, and more quantita-
tive and qualitative results and comparisons.In Sec. 1, we
provide further details and discussion on the geometric
pose and depth estimation, the refinement network, our co-
visibility graph, and training and inference procedures. In
Sec. 2, we provide additional ablation studies and more
quantitative and qualitative comparisons and results. In
Sec. 3, we provide a detailed derivation of our multi-camera
DBA. Note that we group large qualitative comparisons at
the end of this document for better readability.

1. Implementation Details
1.1. Geometric Depth and Pose Estimation

We follow [7] for the context feature encoder gψ and cor-
relation feature encoder gϕ and GRU architecture. In addi-
tion to the context features, gψ also outputs an initialization
to the GRU hidden state h

(0)
ij from input Ii. The hidden

state after the last iteration is pooled among all outgoing
edges from node i to predict a damping factor λi that serves
as a parameter to the multi-camera DBA, which improves
convergence when the current depth estimate is inaccurate.
We perform feature matching and geometric depth updates
at 1/8th of the original image resolution. We predict upsam-
pling masks from the pooled hidden state to upsample depth
to the original resolution. The confidence maps wi are lin-
early interpolated. Furthermore, following RAFT [6], the
correlation volume is built as a 4-level pyramid, and sam-
pled features from all layers are concatenated. Further, each
GRU update is followed by a multi-camera DBA with two
Gauss-Newton steps.

1.2. Depth Refinement

We show the architecture of the depth refinement net-
work in Tab. 1. Note that we input full-resolution frames
and up-sampled depth and confidence. Further, we concate-
nate the depth and confidence predicted at 1/8th scale with

*Equal contribution.

features after the third skip connection. We use the inverse
of the input depth. Further, we obtain the refined depth pre-
diction from the sigmoid output oct ∈ [0, 1]H×W via

1

dct
=

fc
fnorm

·
(1

dmax
+ (

1

dmin
− 1

dmax
) · oct

)
, (1)

where fc is the focal length, fnorm a constant normaliza-
tion factor and dmin and dmax are pre-defined minimum and
maximum depth. For experiments on the DDAD dataset we
set dmin = 1, dmax = 200, fnorm = 715 aligned with the
focal length of the front-facing camera, for NuScenes we
choose dmin = 1, dmax = 80, fnorm = 500.
Dataset generation. To train the refinement network, we
first generate a dataset of samples that contain the prior geo-
metric depth, confidence maps, and poses with the first two
stages of our system. We filter scenes with inaccurate scene
scale by measuring how many reliable feature matches there
are across both temporal and spatial edges with the given
confidences wij . The fewer reliable matches, the weaker
the constraint on the metric scale. Furthermore, based on
the generated poses, we remove static scenes. This allows
us to train an absolute scale monocular depth estimation
model from the raw video data.
Training details. During the training of refinement net-
work Dθ, we randomly set input depth and confidence
weights to zero to learn depth prediction with and with-
out prior geometric estimates as input. We use color-jitter
and random horizontal flipping as augmentations. Further,
we follow a two-stage training paradigm as in [3]. Af-
ter training Dθ in the first stage, we remove training sam-
ples with outliers in the depth estimates of the current
Dθ. In particular, we apply RANSAC to determine the
ground plane in the front view and calculate the height of
each pixel in all views. We omit training samples with

1
H·W

∑
u,v [hu,v < −0.5m] > ϵ where hu,v is the height

of pixel (u, v) w.r.t. the ground plane and ϵ is set to 0.005
for the front and backward-facing cameras and 0.02 for the
side views. This filters frames where a significant amount
of pixels are below the ground plane. In the second stage,

https://www.vis.xyz/pub/r3d3/

we re-train the network from scratch on the filtered dataset
for 20 epochs with the same settings. On NuScenes, we
train our refinement network with all available camera im-
ages (12Hz) instead of only keyframes (2Hz).

1.3. Co-visibility Graph

We detail our multi-camera co-visibility graph construc-
tion described in Sec. 3.1 of the main paper in Algorithm 1.
Note that GetAdjacentNodes returns a different adja-
cency pattern than the spatial edges in A, as described in
Sec. 3.1 of the main paper. In particular, we leverage the
forward motion assumption in order to connect two frames
(i, j) if camera cj is closer to the forward-facing camera
than camera ci. For further clarification, please refer to
Fig. 3 of the main paper.

Algorithm 1 Co-visibility graph construction
Input: K,T,G, {Ict}Cc=0

1: A = ComputeStaticAdjacency(K, T)
2: N = GetNodes(G)
3: M = AddNodes(G, Ict)
4: for i ∈ M # add temporal edges
5: for j ∈ N
6: if Radius(i, j) < rintra
7: AddEdge(G, i, j)
8: end if
9: end for

10: end for
11: for (i, j) ∈ A # add spatial edges
12: AddEdge(G, i, j)
13: end for # add spatial-temporal edges
14: O = GetNodesAtTime(G, t− rintra)
15: O′ = GetAdjacentNodes(G, A, M , O)
16: for (i, j) ∈ O′

17: AddEdge(G, i, j)
18: end for
19: # Remove out-of-context edges and nodes
20: RemoveTemporalEdges(G, t−∆tintra)
21: RemoveSpatialTemporalEdges(G, t−∆tinter)
22: RemoveUnconnectedNodes(G)

Dynamic alternative. We further implement a dynamic
algorithm without the assumptions stated in Sec. 3.1 of the
main paper. The dynamic algorithm establishes edges based
on camera frustum overlap, i.e. it measures the intersec-
tion over union (IoU) of the camera frustums of each frame
across a local time window in world space given the current
camera pose estimates G. We order frame pairs by their IoU
in descending order and choose the N highest overlapping
pairs as co-visible frames. These establish the temporal and
spatial-temporal edges.

We found empirically that the static algorithm performs
similarly to the dynamic alternative while being simpler and

more efficient, so we use it in our experiments. However,
for applications where the assumptions in Sec. 3.1 of the
main paper do not hold, this algorithm provides a suitable
alternative.

1.4. Inference Details

For both datasets, we observe that camera shutters are
not well synchronized in both datasets. This poses a prob-
lem, especially at high speeds. Thus, instead of using con-
stant camera extrinsics, we compute time-dependent rela-
tive camera extrinsics. For inference, we set nitr-wm = 16,
niter1 = 4 and niter2 = 2. For Nuscenes, use a different
threshold β = 0.8.

2. Experiments
Evaluation metrics. We evaluate the proposed method in
terms of depth accuracy and trajectory accuracy.
Depth. Given the estimated depths dct and ground truth
depth d∗

t
c we use compare the following depth metrics

Abs Rel:
1

T · C
∑
d,c

|dct − d∗
t
c|

d∗
t
c

Sqr Rel:
1

T · C
∑
d,c

∥dct − d∗
t
c∥2

d∗
t
c

RMSE:
1

T · C

√∑
d,c

∥dct − d∗
t
c∥2

δ1.25: fraction of d ∈ d for which max

(
d

d∗
,
d∗

d

)
< 1.25

(2)

For up-to-scale evaluation, we resort to the camera-wise
metric scaling as described in [4] which results in scaling
factor s described as

s =
1

C
·
∑
c

median(d∗c)

median(dc)
(3)

We then scale the predicted depth as s · d.
Trajectory. For trajectory evaluation we use the absolute
trajectory error (ATE) score. Given an estimated trajectory
P1, ...,PT ∈ SE(3) and ground truth trajectory Q1, ...,QT

the ATE is defined as

Fi = Q−1
i SPi

ATE = RMSE(F1:T) =

√
1

T

∑
i

∥trans(Fi)∥2
(4)

where trans defines the translational part of F and S is
identity I for unscaled evaluation or straj · I where straj is
determined via least squares for scaled evaluation.

Table 1. Depth refinement network architecture. K describes the kernel size, S the stride. ResidualBlock consists of two convolutional
layers and a skip-connection as proposed in [5]. We generate output at four scales in [0, 1] which is normalized by focal length of the
respective camera and scaled to [1/dmax, 1/dmin].

No. Input Layer Description K S Output Size

(#A, #B) UpBlock

#i (#A) Conv2d→ ELU → Up 3 1
#ii (#i, #B) Concatenate → Conv → ELU 3 1

Encoder

#0 Input: Image + Inv. Geometric Depth + Confidence 5×H ×W
#1 (#0) Conv → BN → ReLU 7 2 64×H/2×W/2
#2 (#1) MaxPool → Skip 3 2 64×H/4×W/4
#3 (#2) 2xResidualBlock → Skip 3 1 64×H/4×W/4
#4 (#3) 2xResidualBlock → Skip 3 2 128×H/8×W/8
#5 Input: Inv. Geometric Depth + Confidence 2×H/8×W/8
#6 (#3, #5) Concatenate 130×H/8×W/8
#7 (#6) 2xResidualBlock → Skip 3 2 256×H/16×W/16
#8 (#7) 2xResidualBlock 3 2 512×H/32×W/32

Decoder

#9 (#8, #7) UpBlock 3 1 256×H/16×W/16
#10 (#9, #4) UpBlock 3 1 128×H/8×W/8
#11 (#10) Conv2d → Sigmoid → Output 3 1 1×H/8×W/8
#12 (#10, #3) UpBlock 3 1 64×H/4×W/4
#13 (#12) Conv2d → Sigmoid → Output 3 1 1×H/4×W/4
#14 (#12, #2) UpBlock 3 1 32×H/2×W/2
#15 (#14) Conv2d → Sigmoid → Output 3 1 1×H/2×W/2
#16 (#15) UpBlock 3 1 16×H ×W
#17 (#16) Conv2d → Sigmoid → Output 3 1 1×H ×W

Ablation studies. In Tab. 3, we show a comparison of our
depth refinement network trained with synthetic data only,
with both synthetic data and real-world data, and real-world
data only. As stated in Sec. 3.3 of the main paper, the re-
sults show that synthetic data cannot help the depth refine-
ment network performance, even when fine-tuning on real-
world data afterward. Instead, we observe the best perfor-
mance when starting training from real-world data directly.
This underlines the importance of our self-supervised train-
ing scheme for the refinement network, since contrary to
the geometric parts of our system, here we cannot rely on
synthetic data to provide us with ground-truth supervision.

For Tab. 4, we train two versions of our refinement net-
work described in Sec. 3.3 of the main paper. We train Dθ
as described in the main paper with sparsified input depth
and train Dω purely for monocular depth estimation without
refining geometric estimates. We evaluate both networks
on monocular depth estimation on DDAD. We observe that
the networks perform similarly, while Dθ can both refine
geometric depth estimates and estimate depth without geo-
metric depth input. This shows that the refinement network
learns strong scene priors that can estimate depth even with-
out any additional input. Further, we can conclude that the
network generalizes well to both depth prediction and depth
refinement.

In Fig. 1 we show an ablation of the covisibility graph
density by varying the parameters described in Sec. 3.1 of

Table 2. Masking scheme ablation on DDAD. We compare the
influence of the different masks used to train the refinement net-
work (cf. Eq. 8 of the main paper) on the final performance.

Mst Moc Mfc Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
0.637 51.086 18.129 0.779

✓ 0.288 10.304 12.982 0.786
✓ ✓ 0.162 3.304 11.638 0.811
✓ ✓ ✓ 0.162 3.019 11.408 0.811

our paper. An increase in the number of edges in the co-
visibility graph only yields marginal improvement, while
resulting in a linear increase in runtime.

During training of Dθ, we mask regions that do not pro-
vide useful information for depth learning when minimizing
the view synthesis loss in Eq. 8 of the paper. We provide an
ablation study of the three masks used in Eq. 8 in Tab. 2.
The self-occlusion Moc and static Mst masks are essential
to depth learning by removing ego-vehicle and e.g. sky re-
gions, respectively. The flow consistency mask Mfc further
reduces outliers, caused by e.g. dynamic objects.
Qualitative comparisons. In Fig. 3, we qualitatively com-
pare our method to existing works in terms of scale-aware
depth estimation on DDAD. Further, we show our geomet-
ric depth estimate alongside the refined depth. We notice
that, especially for the side views, existing works struggle
to obtain accurate depth. On the other hand, the geometric
depth of our method produces many accurate depth predic-

25 50 75 100 125
edges in graph

0.160

0.165

0.170

0.175

0.180

0.185

0.190

A
b
s

R
e
l

25 50 75 100 125
edges in graph

0.76

0.77

0.78

0.79

0.80

0.81

0.82

δ 1
.2

5

25 50 75 100 125
edges in graph

200

300

400

500

600

r
u
n
t
i
m
e

[
m
s
]

Figure 1. Graph density analysis on DDAD. We plot the AbsRel, δ1.25 scores and runtime w.r.t. the number of edges in the co-visibility
graph. Our default setting is shown in orange.

Table 3. Refinement network training. We show that training and
pre-training the refinement network on the synthetic VKITTI [1]
dataset does not yield improvement over self-supervised training
with real-world data as proposed in Sec. 3.3 of the main paper.

VKITTI DDAD Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
✓ 0.282 5.025 15.281 0.572
✓ ✓ 0.163 3.313 11.580 0.809

✓ 0.162 3.019 11.408 0.811

Table 4. Refinement network training comparison. We train Dθ

as described in the main paper with sparsified input depth and train
Dω purely for monocular depth estimation without prior geomet-
ric depth input. We evaluate both networks on monocular depth
estimation without geometric depth input on DDAD.

Dω(Ict) Dθ(Ict ,0,0) Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
✓ 0.204 3.583 12.652 0.723

✓ 0.211 3.806 12.668 0.715

tions, but is at the same time very noisy, especially in low-
textured areas and for dynamic objects. Our full method
demonstrates the best performance.

In Fig. 4, we show a comparison of our method to
the state-of-the-art approach SurroundDepth [8] on the
NuScenes dataset. We observe that our approach produces
significantly sharper and more accurate depth maps for all
three of the examples.

Finally, we show additional comparison on accumulated
point clouds on DDAD in Fig. 5 and on NuScenes in Fig. 6.
Our method produces significantly more consistent 3D re-
constructions than competing methods, as can be seen by
the more consistent reconstruction of road markings, side-
walks, and trucks in Fig. 5. In Fig. 6 we observe that our
method approaches the 3D reconstruction accuracy of the
LiDAR-based 3D reconstruction.
Runtime breakdown and memory consumption. In
Tab. 5 we show a component-wise breakdown of time-
complexity and measured runtime of our approach. Com-
pared to [7], we tackle a more complex scenario with six
images per timestep. This leads to many more possible
edges in the co-visibility graph, increasing the computa-

Table 5. Inference runtime analysis. We list the runtime of each
component of our system during inference.
Component Complexity Runtime [ms] Percent [%]

Feature encoder O(|C|) 5 1.4
Context encoder O(|C|) 5 1.4
Create corr. volumes O(|Enew|) 13 3.7
Corr. volume sampling O(niter · |E|) 31 8.8
GRU steps O(niter · |E|) 196 55.4
Multi-cam. DBA steps O(niter) 1 0.3
Completion O(|V|) 98 27.7
Others - 5 1.4

Total 354 100

tional burden. Thus, the runtimes are slower than reported
in [7]. However, Tab. 5 shows that runtime is dominated by
the GRU, which scales with the number of edges |E|. The
breakdown and our observed 10× runtime improvement are
both at test time. The peak GPU memory consumption in
inference with our parameter setting is 6.08 GB (∼61 MB
per edge).
Limitations. The components of our system rely on
deep neural networks with downsampling operations. This
means a large chunk of the computation will happen at a
lower resolution. While this provides a computational ad-
vantage, it also comes at the cost of losing high-frequency
details that are important for thin structures like fences. In
Fig. 2, we show an example of this phenomenon where
our depth estimate results in a large error because there is
an ambiguity between the background and the foreground
fence. Similarly, other thin structures like poles could be
missed, especially if they are far away.

3. Multi-Camera DBA

We provide a detailed derivation of our multi-camera
DBA. The goal of the bundle adjustment is to minimize
the energy function E, i.e. align edge-wise relative poses
Gij and frame-wise depth di whose reprojection minimizes
the Mahalanobis distance to the estimated flow fij over all
edges E in the co-visibility graph. In the following, let H

Figure 2. Illustration of thin structures. We depict an example
frame, prediction, and error map from the NuScenes dataset. The
fence in the picture poses a problem for our depth estimator since
it is partially transparent. Further, since behind the fence, there is
a large free space, we observe a large Sq. Rel. score for the areas
that are predicted as background.

and W be the depth map’s height and width and T = |V|/C
the number of timesteps we consider, where C is the num-
ber of cameras.

E =
∑

(i,j)∈E

∥∥pij −Πcj (Gij ◦Π−1
ci (di))

∥∥2
Σij

(5)

With Σij = diag(wij), pij = xi + fij and

Gij =
(
PtjTcj

)−1
PtiTci (6)

where Tci and Tcj are known constants and Pti and Ptj

are optimization variables. This will lead to updates

P(k) = exp (δξ)P(k−1)

d(k) = d+ d(k−1)
(7)

where δξ and δd are the solution to the normal equation

J⊤ΣJ ·
[
δξ
δd

]
= −J⊤Σr (8)

where J ∈ R|E|·H·W ·2×(T ·6+|V|·H·W) is the Jacobian
of the residuals w.r.t. all optimization variables and r ∈
R|E|·H·W ·2 is the vector of all residuals

3.1. Pose - Depth Decomposition

We can make three observations. First, pose Pk only
appears in rij if k is either i or j and ti ̸= tj . Second, there
are no loops, thus i ̸= j. Third, depth dk only appears in
rij if k = i, therefore ∂rij

∂dk
= 0 ∀k ̸= i.

Let us now consider a single edge (i, j) ∈ E with
rij ∈ RH·W ·2 the residuals and Jij ∈ RH·W ·2×(12+H·W)

the Jacobian w.r.t. all optimization variables. We can
decompose the Jacobian into its components, i.e. Jij =[
Jξi + Jξj Jdi

]
where Jdi is diagonal. Now, when only

considering the aforementioned edge, Eq. 8 can be written
as Bii Bij Eii

Bji Bjj Eji
E⊤
ii E⊤

ji Ci

δξi
δξj
δdi

 =

vi
vj
wi

 (9)

with

Bii = J⊤
ξiΣrijJξi Eii = J⊤

ξiΣrijJdi

Bij = J⊤
ξiΣrijJξj Eji = J⊤

ξjΣrijJdi

Bji = J⊤
ξjΣrijJξi vi = −J⊤

ξiΣrijrij

Bjj = J⊤
ξjΣrijJξj vj = −J⊤

ξjΣrijrij

Ci = J⊤
di
ΣrijJdi

wi = −J⊤
di
Σrijrij

(10)

We now consider again all edges E . Because the energy
function in Eq. 5 is the sum of the energies for all edges,
we can apply the sum rule for derivatives. Thus, we can
combine the components of the normal equation. Since the
block matrices from Eq. 10 are dependent on their respec-
tive residual rij , we can combine the blocks via a scattered
sum

B =
∑

(i,j)∈E

ΦT×T
titi [Bii(rij)] + ΦT×T

titj [Bij(rij)]

+ ΦT×T
tjti [Bji(rij)] + ΦT×T

tjtj [Bjj(rij)]

E =
∑

(i,j)∈E

Φ
T×|V|
tii

[Eii(rij)] + Φ
T×|V|
tji

[Eji(rij)]

C =
∑

(i,j)∈E

Φ
|V|×|V|
ii [Ci(rij)]

v =
∑

(i,j)∈E

ΦT×1
ti [vi(rij)] + ΦT×1

tj [vj(rij)]

w =
∑

(i,j)∈E

Φ
|V|×1
i [wi(rij)]

(11)

where ΦM×N
mn : RU×V → RM ·U×N ·V is the function

which maps a block matrix to row m ∈ {1, ...,M} and
column n ∈ {1, ..., N} while the other elements are set to
zero. To improve convergence, the Levenberg-Marquardt
method is used on C, leading to[

B E
E⊤ C+ λI

] [
δξ
δd

]
=

[
v
w

]
(12)

With I the identity matrix and pixel-wise damping factor
λ is predicted by the GRU (see Sec. 1) for each node i. We
observe that C is diagonal. We can use the Schur comple-
ment to solve Eq. 12 efficiently, due to (C + λI)−1 being
very easy to invert. Thus the updates are given by

S = B−EC−1E⊤

δξ = S−1(v −EC−1w)

δd = (C+ λI)−1(w −E⊤δξ)

(13)

Lastly, it can be shown that S ≻ 0, thus the Cholesky-
decomposition can be used to efficiently solve for S−1.

3.2. Jacobians

Given the decomposition above, we now define the Jaco-
bians Jξi , Jξj , and Jdi . Let us consider a single depth d of
node i at location (u, v). The residual is given by

rij,uv = pij,uv − p̂ij,uv ∈ R2 (14)

where p̂ij,uv = Πcj (Gij ◦ Π−1
ci (d)). We further de-

fine the 3D point corresponding to pixel (u, v) as X =[
X Y Z W

]⊤
which is given by X = Π−1

ci (d) and
the transformed point X′ = GijX. We can thus define the
projection and unprojection operators for pinhole cameras
ci and cj

Πcj (X
′) =

[
fxcj

X′

Z′ + cxcj
fycj

Y ′

Z′ + cycj

]
(15)

Π−1
ci (d) =


u−cxci
fx
ci

v−cyci
fy
ci

1
d

 (16)

where fxc , f
y
c are the camera c’s focal lengths in x and y

direction, cxc , c
y
c are the respective principal points.

Depth The Jacobian Jd w.r.t. depth d is defined as

Jd =
∂rij
∂d

= −∂p̂ij
∂d

= −
∂Πcj (X

′)

∂X′
∂X′

∂d

= −
∂Πcj (X

′)

∂X′ Gij

∂Π−1
ci (d)

∂d

(17)

∂Πcj (X
′)

∂X′ =

[
fxcj

1
Z′ 0 −fxcj

X′

Z′2 0

0 fycj
1
Z′ −fycj

Y ′

Z′2 0

]
(18)

∂Π−1
ci (d)

∂d
=


0
0
0
1

 (19)

Pose The Jacobian Jξ w.r.t. ξ where ξ ∈ se(3) is either ξi
or ξj .

Jξ =
∂rij
∂ξ

= −∂p̂ij
∂ξ

= −
∂Πcj (X

′)

∂X′
∂X′

∂ξ
(20)

The partial derivative
∂Πcj

(X′)

∂X′ has been derived in
Eq. 18. For ∂Gij

∂ξ , we can again decompose Gij into the
static parts Tci and Tcj and the unknown, to be optimized
parts, Pti and Ptj

X′ = (PtjTcj)
−1PciTciX (21)

First, similar to Eq. 39 to 44 in [2], for A = A1(A0)
−1

we can write

∂A

∂A0
=

∂ log
(
A1(exp (ξ)A0)

−1(A1A
−1
0)−1

)
∂ξ

|ξ=0

=
∂

∂ξ
|ξ=0

[
log

(
A1A

−1
0 exp (−ξ)A0A

−1
1

)]
=

∂

∂ξ
|ξ=0

[
log

(
exp (−AdjA1A

−1
0

ξ)A1A
−1
0 A0A

−1
1

)]
=

∂

∂ξ
|ξ=0

[
log

(
exp (−AdjA1A

−1
0

ξ)
)]

=
∂

∂ξ
|ξ=0

[
−AdjA1A

−1
0

ξ
]

= −AdjA1A
−1
0

(22)

In the following, we omit the explicit perturbation
around ξ = 0. Let now G1, ...,G6 ∈ R4×4 be generators
as defined in Eq. 65 in [2]. With the chain rule and Eq. 94
in [2] and Eq. 22 above, the derivative w.r.t. the pose of
incoming node j is given by

∂X′

∂ξj
=

∂

∂ξj

[
(exp (ξj)PtjTcj)

−1PtiTciX
]

=
∂

∂ξj
[T−1

cj (exp (ξj)Ptj)
−1︸ ︷︷ ︸

A

PtiTciX︸ ︷︷ ︸
Xw

]

=
∂

∂A
[AXw] · ∂

∂ξj
[T−1

cj︸︷︷︸
A1

(exp (ξj)Ptj︸ ︷︷ ︸
A0

)−1]

=
∂

∂A
[AXw] · ∂

∂A0
[A1A

−1
0]

=
[
G1X

w ... G6X
w
]
· (−AdjA1A

−1
0
)

= −
[
G1X

w ... G6X
w
]
·AdjT−1

cj
P−1

tj

(23)

Finally, with Eq. 94 and 97 in [2] and the derivative w.r.t.
the pose of the outgoing node i

∂X′

∂ξi
=

∂

∂ξi
[(PtjTcj)

−1 exp (ξi)Pti︸ ︷︷ ︸
A

TciX︸ ︷︷ ︸
Xti

]

=
∂

∂A
[AXti] · ∂

∂ξi
[(PtjTcj)

−1 exp (ξi)Pti]

=
[
G1X

ti ... G6X
ti
]
·AdjT−1

cj
P−1

tj

(24)

Finally, we compose the component-wise Jacobians
above into the Jacobian J as stated in Sec. 3.1. We can
now use J to compute the updates δξ and δd in Eq. 8.

Front F.Left F.Right B.Left B.Right Back

In
pu

t
FS

M
[4

]
Su

rr
ou

nd
D

ep
th

[8
]

G
eo

m
et

ri
c

D
ep

th
O

ur
s

Figure 3. Qualitative comparison on DDAD. We compare existing works to both our geometric and refined depth estimates. Especially
for the side views, existing works struggle to obtain accurate depth. The geometric depth produces many accurate depth predictions, but
contains many noisy points, especially in low-textured areas and for dynamic objects. Our full method demonstrates the best performance.

Front F.Left F.Right B.Left B.Right Back

In
pu

t
SD

[8
]

O
ur

s
In

pu
t

SD
[8

]
O

ur
s

In
pu

t
SD

[8
]

O
ur

s

Figure 4. Qualitative comparison on NuScenes. We show a comparison of depth maps from our method to the depth maps of the state-
of-the-art approach SurroundDepth [8]. We observe that our approach produces significantly sharper and more accurate depth predictions.

DDAD 000194 DDAD 000188

G
ro

un
d-

Tr
ut

h
FS

M
[4

]
SD

[8
]

O
ur

s

Figure 5. Qualitative comparison of 3D reconstructions on DDAD. We show the 3D reconstructions of our method compared to Sur-
roundDepth [8] and FSM [4]. Additionally, we plot the ground-truh LiDAR 3D reconstruction at the top. The ego-vehicle trajectory is
marked in red. We observe that our method produces significantly more consistent and accurate 3D reconstructions than competing meth-
ods, as can be seen when focusing on the trucks (right) and the street markings and pedestrians (left).

NuScenes 0016 NuScenes 0268

G
ro

un
d-

Tr
ut

h
O

ur
s

Figure 6. Qualitative 3D reconstruction results on NuScenes. We show our 3D reconstruction results alongside the LiDAR ground-truth
3D reconstruction. The ego-vehicle trajectory is marked in red. We observe that our method yields similarly consistent 3D reconstruction
results as the LiDAR ground-truth while being denser.

References
[1] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-

tual KITTI 2. CoRR, 2020.
[2] Ethan Eade. Lie groups for 2d and 3d transformations. URL

http://ethaneade. com/lie. pdf, revised Dec, 2013.
[3] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien

Gaidon. Semantically-guided representation learning for self-
supervised monocular depth. In ICLR, 2020.

[4] Vitor Guizilini, Igor Vasiljevic, Rares Ambrus, Greg
Shakhnarovich, and Adrien Gaidon. Full surround monodepth
from multiple cameras. In RA-L, 2022.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.

[6] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020.

[7] Zachary Teed and Jia Deng. DROID-SLAM: Deep Vi-
sual SLAM for Monocular, Stereo, and RGB-D Cameras.
NeurIPS, 2021.

[8] Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Yong-
ming Rao, Guan Huang, Jiwen Lu, and Jie Zhou. Sur-
rounddepth: Entangling surrounding views for self-supervised
multi-camera depth estimation. In CoRL, 2022.

