
Vox-E: Text-guided Voxel Editing of 3D Objects
— Supplementary Material —

Etai Sella1 Gal Fiebelman1 Peter Hedman2 Hadar Averbuch-Elor1

1Tel Aviv University 2Google Research

Contents

1. Additional Details
1.1. Implementation Details
1.2. Evaluation Protocol
1.3. 3D Object Editing Techniques
1.4. 2D Image Editing Techniques

2. Ablations
2.1. Alternative Regularization Objectives
2.2. Ablating the Color Representation
2.3. Cross-attention Grid Supervision

3. Additional Visualizations and Results

We refer readers to the interactive visualizations at
index.html that show fly-through results and compar-
isons. In this document, we provide additional details (Sec-
tion 1), ablations (Section 2) and visualizations (Section 3).

1. Additional Details
1.1. Implementation Details

Below we provide all the implementation details of our
method, detailed in Section 3 in the main paper.

Grid-Based Volumetric Representation

We use 100 images uniformly sampled from upper hemi-
sphere poses along with corresponding camera intrinsic and
extrinsic parameters to train our initial grid. We follow the
standard ReLU Fields [2] training process using their de-
fault settings aside from two modifications:

1. We change the result grid size from the standard 1283

to 1603 to increase the output render quality.

2. As detailed in the main paper, we limit the order of
spherical harmonics to be zero order only to avoid un-
desirable view-dependent effects (we further illustrate
these effects in Section 2.2).

Text-guided Object Editing

We perform 8000 training iterations during the object edit-
ing optimization stage. During each iteration, a random
pose is uniformly sampled from an upper hemisphere and
an image is rendered from our edited grid Ge according
to the sampled pose and the rendering process described
in ReLU Fields [2]. Noise is then added to the rendered
image according to the time-step sampled from the fitting
distribution.

We use an annealed SDS loss which gradually de-
creases the maximal time-step we draw t from. Formally,
this annealed SDS loss introduces three additional hyper-
parameters to our system: a starting iteration istart, an an-
nealing frequency fa and an annealing factor γa. With these
hyper-parameters set, we change our time-step distribution
to be:

t ∼ U [t0 + ε, tfinal ∗ ki + ε], (1)

ki =


1, if i < istart

ki−1 ∗ γa, else if i % fa = 0

ki−1, otherwise
(2)

In all our experiments, the values we use for ε, istart, fa and
γa are 0.02, 4000, 600, and 0.75. Additionally, we stop an-
nealing the time-step when it reaches a value of 0.35. The
latent diffusion model we use in our experiments is "Sta-
bleDiffusion 2.1" by Stability AI.

We use a weight of 200 to balance the two terms (mul-
tiplying Lreg3D by this weight value). The volumetric regu-
larization term operates only on the density features of the
editing grid. The optimizer we used in this (and all other
stages) is the Adam optimizer [3] with a learning rate of
0.03 and betas 0.9, 0.999. The resolution of the images ren-
dered from our grid is 266×266. We add a "a render of"
prefix to all of our editing prompts as we found that this
produced more coherent results (and the images the LDM
receives are indeed renders).

index.html
https://huggingface.co/stabilityai/stable-diffusion-2-1

Spatial Refinement via 3D Cross-Attention

The diffusion model we use for this stage is "StableDif-
fusion 1.4" by CompVis and it consists of several cross-
attention layers at resolutions 32, 16, and 8. To extract a sin-
gle attention map for each token we interpolate each cross
attention map from each layer and attention head to our im-
age resolution (266x266) and take an average per each to-
ken. The time-step we use to generate the attention maps is
0.2 (the actual step being 0.2 * Nsteps = 200).

The cross-attention grids Ae and Aobj contain a density
feature and an additional one-dimensional feature a, which
represents the cross-attention value at a given voxel and can
be interpreted and rendered as a grayscale luma value. We
initialize the density features in these grids to the density
features of the editing grid’s (the former stage’s output) and
freeze them. At each refinement iteration we generate two
2D cross-attention maps from the LDM, one for the object
and one for the edit. After obtaining the 2D cross-attention
maps, we render gray-scale heatmaps from Ae and Aobj and
use L1 loss to encourage similarity between the rendered at-
tention images and their corresponding attention maps ex-
tracted from the diffusion model. We repeat this process for
1500 iterations, sampling a random upper-hemisphere pose
each time. As in the former optimization stage, we use the
Adam optimizer with a learning rate of 0.03 and betas 0.9
and 0.999 and generate images in 266×266 resolution.

After obtaining the two grids Ae and Aobj , we perform
element-wise softmax on their a values to obtain probabili-
ties for each voxel belonging to either the object, denoted by
Pobj(v), or the edit, denoted by Pe(v). We then proceed to
calculate the binary refinement volumetric mask. To do this
we define a graph in which each non-zero density voxel in
our edited grid Ge is a node. We define "edit" and "object"
labels as the source and drain nodes, such that a node con-
nected to the source node is marked as an "edit" node and a
node connected to the drain node is marked as an "object"
node. We rank the nodes according to their Pe(v) values
and connect the top Ninit−edit nodes to the source node.
We then rank the nodes according to their Pobj(v) value
and connect the top Ninit−object nodes to the drain node.
We then connect the non-terminal nodes to each-other in a
6-neighborhood with the capacity of each edge being wpq

as detailed in the main paper.
We set the hyper-parameters Ninit−edit and Ninit−object

to be 300 and 200. To perform graph-cut [1], we used the
PyMaxflow implementation of the max-flow / min-cut algo-
rithm.

1.2. Evaluation Protocol

To evaluate our results quantitatively, we constructed a
test set composed of eight scenes: ’White Dog’, ’Grey
Dog’, ’White Cat’, ’Ginger Cat’, ’Kangaroo’, ’Alien’,
’Duck’ and ’Horse’, and six editing prompts: (1) A ⟨object⟩

wearing big sunglasses, (2) A ⟨object⟩ wearing a Christmas
sweater, (3) A ⟨object⟩ wearing a birthday party hat, (4) A
yarn doll of a ⟨object⟩, (5) A wood carving of a ⟨object⟩,
(6) A claymation ⟨object⟩. This yields 18 edited scenes in
total. We render each edited scene from 100 different poses
distributed evenly along a 360◦ ring. In addition to these
18 scenes we also render 100 images from the same poses
on the initial (reconstruction) grid Gi for each input scene.
When comparing our result with other 3D textual editing
papers we evaluate our results using two CLIP-based met-
rics. The CLIP model we used for both of these metrics is
ViT-B/32 and the input image text prompts used to calcu-
late the directional CLIP metric is “A render of a ⟨object⟩".
CLIPDir is calculated for each edited image in relation to
the corresponding image in the reconstruction scene. To
quantitatively evaluate ablations we use two additional met-
rics using FID [4]. For this we use the pytorch implementa-
tion given by the authors with the standard settings.

360◦ Real Scenes

For the 360◦ Real Scenes edits we follow the same imple-
mentation details as outlined previously, with three modifi-
cations:

1. We alternate between using the DVGO model or the
ReLU-Fields model as our 3D representation. Results
for both models are presented in Figure 6 of the main
paper.

2. Our input poses are created in a spherical manner and
when rendering we sample linearly in inverse depth
rather than in depth as seen in the official implementa-
tion of NeRF .

3. We perform 5000 training iterations during the object
editing optimization stage and the values we use for ε,
istart, fa and γa are 0.02, 3000, 400, and 0.75.

1.3. 3D Object Editing Techniques

Below we provide additional details on the alternative
3D object editing techniques we compare against. All of
the techniques we compare against use only an un-textured
mesh and an editing prompt as input. As such, we used the
meshes our inputs were rendered from as input for the edit-
ing methods. Additionally, we tested an additional scenario
in which we imported the ’horse’ mesh from the Text2Mesh
GitHub repository to blender, added a grey-matte material
to it and rendered images of it to use as input for our system.
This scenario used four prompts: (1) A wood carving of a
horse, (2) A horse wearing a Santa hat, (3) A donkey, (4)
A carousel horse, and was used for qualitative comparisons
only.

 https://huggingface.co/CompVis/stable-diffusion-v1-4
 https://huggingface.co/CompVis/stable-diffusion-v1-4
 https://github.com/pmneila/PyMaxflow
https://github.com/openai/CLIP
 https://github.com/mseitzer/pytorch-fid
 https://github.com/mseitzer/pytorch-fid
https://github.com/bmild/nerf
https://github.com/threedle/text2mesh/blob/main/data/source_meshes/horse.obj
https://github.com/threedle/text2mesh/blob/main/data/source_meshes/horse.obj

Text2Mesh

When comparing to Text2Mesh we used the code pro-
vided by the authors and the input settings given in the
"run_horse.sh" demo file.

SketchShape

In this comparison we again use the code provided
by the authors. And the input parameters used are
the default parameters in the ’train_latent_nerf.py’ script
’train_latent_nerf.py’ script with 10,000 training steps (as
opposed to the default 5,000).

Latent-Paint

We compared our method to Latent-Paint only qualitatively
as this method outputs edits that transform only the appear-
ance of the input mesh, rather than appearance and geome-
try. As in SketchShape we used the code provided by the au-
thors and used the default input settings provided for latent
paint, which are given in the ’train_latent_paint.py’ script.

DFF + CN

In this comparison we use the code provided by the authors
and the default input parameters provided for this method.

1.4. 2D Image Editing Techniques

When comparing to InstructPix2Pix and SDEdit we con-
structed two image sets for each scene / prompt combina-
tion we wanted to test. Both sets were created by rendering
one of our inputs in evenly spaced poses along a 360◦ ring,
one set was rendered over a white background and the other
over a ’realistic’ image of a brick wall. We used these sets
as input for each 2D editing method along with an editing
prompt and compared the results to rendered outputs from
our result grids. When comparing to InstructPix2Pix we
used the standard InstructPix2Pix pipeline with 16bit float-
ing point precision and 20 inference steps. We used the
default guidance scale (1.0) for the images rendered over
the ’realistic’ background and increased the guidance scale
to 3.0 for the images rendered over a white background, as
we found it to produce higher quality results specifically for
these more ’synthetic’ images. When giving prompts to In-
structPix2Pix we rephrased our prompts as instructions, for
example turning "a dog wearing sunglasses" to "put sun-
glasses on this dog". When comparing to SDEdit we used
the standard SDEdit pipeline with guidance scale of 0.75
and a strength of 0.6.

2. Ablations
In this section, we show a more detailed ablation study

which evaluates the effect of our volumetric regularization

loss (Section 2.1) and an additional experiment, demonstrat-
ing the effect of using high order spherical harmonics coef-
ficients (Section 2.2).

2.1. Alternative Regularization Objectives

Table 1 shows a quantitative comparison over differ-
ent image-space and volumetric regularizations. Only the
image-space L1 loss also appears in the main paper. Below
we provide additional details on these ablations.

L
r
e
g
3
D

xxxxx

Input ”A wood
carving of a

duck"

Input ”A dog wearing
a christmas

sweater"

L
r
e
g
3
D
+
+

xxxxxx

Figure 1. Regularizing RGB colors in addition to volumetric
densities. We show results obtained when using our default reg-
ularization objective Lreg3D (top-row) compared against results
obtained when using Lreg3D++- an alternative version of Lreg3D

(bottom-row) in which we penalize the miscorrelation between
both density and color features. These results show that regular-
izing both density and RGB can be limiting, especially when the
edit requires a drastic change in color, such as changing the white
fur of the dog into a vibrant christmas sweater.

Image-space Regularization In this setting we render
images from our editing grid Ge in the poses corresponding
to the input images during each iteration of the optimization
stage. Rather than using a volumetric regularization, we in-
cur a loss between the images rendered from Ge and the cor-
responding input image while using the same weight used
to balance Lreg3D with the annealed SDS loss (this weight
is set to 200, as detailed in Section 1.1). We evaluate this
ablation using L1 and L2 image space loss functions.

Alternative Volumetric Regularization Functions In
this setting we replace our correlation-based regulariza-
tion with other functions that encourage similarity between
the density features of the grids using the same balancing
weight. Namely we compare against L1 and L2 volumet-
ric loss functions, both penalizing the distance between the
density features of Gi and those of Ge. We additionally
compare against an alternative version of Lreg3D in which
we penalize the miscorrelation between both density and
color features, formally:

https://github.com/threedle/text2mesh
https://github.com/threedle/text2mesh
https://github.com/eladrich/latent-nerf
https://github.com/eladrich/latent-nerf
https://github.com/eladrich/latent-nerf/tree/main/scripts
https://github.com/eladrich/latent-nerf/tree/main/scripts
https://github.com/pfnet-research/distilled-feature-fields
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/pix2pix
https://huggingface.co/docs/diffusers/using-diffusers/img2img

Loss Function CLIPSim ↑ CLIPDir ↑ FIDRec ↓ FIDInput ↓

2D L1 0.26 0.02 415.96 437.09
L2 0.25 0.02 437.68 467.14

3D
L1 0.36 0.05 222.91 284.86
L2 0.35 0.05 240.50 284.83
Lreg3D++ 0.34 0.02 210.46 242.73
Lreg3D 0.36 0.06 223.89 272.73

Table 1. Detailed ablation study, evaluating the effect of differ-
ent regularization objectives. We compare the performance using
Lreg3D, with image-space (top rows) and volumetric (bottom rows)
L1 and L2 losses, as well as Lreg3D++, which also penalizes mis-
correlations between color features.

Lreg3D++ = Lreg3D+(1− Cov(frgb
i , frgb

e)√
V ar(frgb

i)V ar(frgb
e)

) (3)

We find that using this loss yields better reconstruction
scores, at the expense of significantly lower CLIP-based
scores (e.g., CLIPDir scores drop from 0.08 to 0.02). Quali-
tatively, constraining RGB values as well as density features
appears too limiting for our purposes. This can be seen
in Figure 1, where we compare results obtained when us-
ing Lreg3D++ against results obtained when using Lreg3D.
When observing these results, we can see that the edit in-
tegrity is reduced at the expense of the preservation of the
origin object’s color. This is evident in the duck, for in-
stance, where the brown wooden color of the body is only
clearly visible in the Lreg3D example. Furthermore, the
colors of the sweater on the dog are significantly faded
when regularized with Lreg3D++ as the colors of a standard
christmas sweater are typically much more vibrant than the
white fur of the dog.

2.2. Ablating the Color Representation

As mentioned in Section 3.1 of the main paper, we do not
model view dependent effects using higher order spherical
harmonics as that leads to undesirable effects. We demon-
strate this by observing these effects in examples rendered
with 1st and 2nd order spherical harmonic coefficients as
color features. These results can be seen in videos available
on our project page.

When observing these results we can clearly see how
view-dependent colors yield undesirable effects such as the
feet of the “yarn kangaroo" varying from green to yellow
across views or the head of the dog becoming a birthday
party hat when it faces away from the camera. We ad-
ditionally see the colors become over-saturated, especially
when using second-order spherical harmonic coefficients. It
is also evident that the added expressive capabilities of the
model allow it to over-fit more easily to specific views, cre-
ating unrealistic results such as the “cat wearing glasses" in
the first and second order coefficient models, where glasses

are scattered along various parts of its body. We note that
while this expressive power currently produces undesirable
effects it does potentially enable higher quality and more
realistic renders, and therefore, we believe that constraining
this power is an interesting topic for future research.

2.3. Cross-attention Grid Supervision

As explained in Section 1.1, we use a constant time-
stamp of 0.2 when extracting attention maps for training our
attention grids Ae and Aobj . This value was chosen empir-
ically as we found that higher time-steps tend to be noisier
and less focused, while lower time-steps varied largely from
pose to pose producing inferior attention grids. This can be
seen qualitatively in Figure 2. As illustrated in the figure,
the attention values for the edit region get gradually more
smeared and unfocused as the time-steps increase. This is
evident, for instance, in warmer regions around the kanga-
roo’s tail or the head of the duck. While perhaps less visu-
ally distinct, we can also observe that in lower timestamps
the warm regions denoting high attention values cover a
smaller area of the region which should be edited. We em-
pirically find that this makes it more challenging for sepa-
rating the object and edit regions.

3. Additional Visualizations and Results
Visualizing 2D cross-attention maps and images ren-
dered from our 3D cross-attention grids While the at-
tention maps used as ground-truth are inherently unfocused
(as they are up-sampled from very low resolutions) and are
not guaranteed to be view consistent, we show that learn-
ing the projection of these attention maps on to our object’s
density produces view-consistent heat maps for object and
edit regions (Figure 3).

References
[1] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE Transactions
on pattern analysis and machine intelligence, 23(11):1222–
1239, 2001.

[2] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy
Mitra. Relu fields: The little non-linearity that could. In ACM
SIGGRAPH 2022 Conference Proceedings, pages 1–9, 2022.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

[4] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch.
https://github.com/mseitzer/pytorch-fid,
08 2020. Version 0.2.1.

https://github.com/mseitzer/pytorch-fid

2D
cr

os
s-

at
te

nt
io

n
xx

3D
gr

id
(A

e
)

2D
cr

os
s-

at
te

nt
io

n
xx

3D
gr

id
(A

e
)

t=1 t=200 t=400 t=600 t=800 t=999

Figure 2. Visualizing 2D cross-attention maps and 3d cross-attention grids over different diffusion timestamps. We visualize the
trained 3d cross-attention grids and the corresponding 2D cross-attention maps used as supervision across different diffusion timestamps.
We show them for the edit region corresponding to the token associated with the word “rollerskates" (top two rows) and “hat" (bottom two
rows).

2D
cr

os
s-

at
te

nt
io

n
xx

3D
gr

id
(A

e
)

2D
cr

os
s-

at
te

nt
io

n
xx

3D
gr

id
(A

o
b
j
)

2D
cr

os
s-

at
te

nt
io

n
xx

3D
gr

id
(A

e
)

2D
cr

os
s-

at
te

nt
io

n
xx

3D
gr

id
(A

o
b
j
)

Figure 3. Visualizing 2D cross-attention maps and 3d cross-attention grids over multiple viewpoints. We visualize the optimized 3d
cross-attention grids and the corresponding 2D cross-attention maps used as supervision. We show them for the edit region corresponding
to the token associated with the word “rollerskates" (top two rows) and “hat" (fifth and sixth rows) and the object region (third and fourth
rows for the kangaroo and bottom two rows for the duck).

