FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis
—Supplementary Material—

Seunghyeon Seo Yeonjin Chang Nojun Kwak

Seoul National Univeristy
{zzzlssh, yjean8315, nojunk}@snu.ac.kr

Real. Syn. 360° [5] DTU [3] LLFF [4]

4-view ‘ 8-view 3-view ‘ 6-view ‘ 9-view 3-view
Learning Rate | [le—3, le—5] \ [2e—3,2e—5]
Warm-up Step | 512 1024 | 512 \ 1024 \ 512
Delay Multiplier ‘ le—2
A1 (for Lnip) ‘ [4.0,1e—3]
Xo(for L) | [de—1,1e—4] | [de—2,1e—5] | [de—1,1e—4] | [4e—2,1e—5] | [4e—3,1e—0] | [4e—3,1le—0]
Az (for Lyg) | [le—4,1e—1] | [le=5,1e—2] | [le—4,1e—1] | [le=5,1e—2] | [le—6,1e—3] | [le—6,1le—3]
Aa(for L) | le—2 | le=3 |  le=3 | le=4 | le=5 |  le=b
As(for Lgec) | le-=1 | le=2 | le=1 | le=2 | le=3 |  le-3
Xe(for Log) | le=1 | le=2 | le=1 | le=2 | le=3 | le-3

Table A: Details of hyperparameters and loss balancing terms. For each dataset, the more training views are provided,
the smaller \’s we set to prevent over-regularization, except A\ for Lnpr. [a, b] indicates the annealing from « to b.

A. Implementation Details

The detailed hyperparameters and our loss balancing
terms by the datasets and the number of training views are
provided in Tab. A.

B. Explicit Normalization for the Estimated
Surface Normals

As mentioned in Sec. 3.2, we use the weighted sum of
blending weights and estimated normal vectors along a ray,
ie.n = Zf\il w;n;, as the surface normals n to derive a
flipped reflection direction d’. In this formulation, fi is not
guaranteed to be a unit vector without an explicit normaliza-
tion process. However, we empirically found that the nor-
malization rather destabilizes the training and leads to the
performance degradation as shown in Fig. A. We conjec-
ture that the inaccurately generated r’ with an explicit nor-
malization provides wrong supervisory signals, especially
during the initial training stage when the surface normals
are not accurately estimated. Furthermore, as illustrated in
Fig. B, n is trained naturally to approximate the unit vec-
tor through the training without an explicit normalization
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w/ explicit normalization ~ w/o explicit normalization

Figure A: Comparison between FlipNeRF using n with
and without an explicit normalization. With explicitly
normalized n (left), our FlipNeRF suffers from the train-
ing instability and achieves degenerate results. We are able
to achieve much superior rendering quality with our pro-
posed surface normals (right), which are trained to approx-
imate unit vectors, thanks to our regularization techniques
and masking strategy.

process. With our proposed loss terms and regularization
techniques for accurate normal estimation, we are able to
use 1 as the surface normal vector without any additional
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Figure B: Distribution of ||i||> without an explicit nor-

malization process. At an initial training stage, the esti-

mated surface normals fn are not unit vectors as most of
|Ifaf|2 are far from 1. However, our proposed 1 is trained to
be a unit vector naturally through the training without an
explicit normalization process, and most of ||fa||2 are con-
centrated close to 1 after the training, which indicates that
n is successfully approximated to a unit vector.

normalization process.

C. Additional Qualitative Results

The additional qualitative comparisons are provided in
Fig. C, Fig. D, and Fig. E. Furthermore, we provide more
qualitative results of our FlipNeRF in Fig. F, Fig. G, and
Fig. H. Our FlipNeRF shows superior rendering quality

compared to other baselines.
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Figure C: Additional qualitative comparisons on Realistic Synthetic 360°.
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Figure D: Additional qualitative comparisons on DTU.
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Figure E: Qualitative comparisons on LLFF 3-view.
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Figure F: Additional qualitative results of our FlipNeRF on Realistic Synthetic 360°.



(c) 9-view

Figure G: Additional qualitative results of our FlipNeRF on DTU.



Figure H: Additional qualitative results of our FlipNeRF on LLFF 3-view.
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