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This supplementary material contains additional results
and experimental details. In Section S1, we discuss the
implementation details of the three tasks performed in the
main paper – RAW denoising, illuminant estimation, and
neural rendering. Representative examples from our night-
time CG dataset as well as additional visual results, are pro-
vided in Section S2. Finally, Section S3 examines the chal-
lenging scenario where just a single DNG from the target
sensor is available, as against a set of DNGs.

S1. Implementation details

Our method assumes that a small set of RAW files from
the target sensor is available in DNG format. The Digi-
tal Negative (DNG) format [1] is a popular open RAW file
format introduced by Adobe. While most modern cameras
natively support DNG, nearly all RAW formats can be con-
verted to DNG using Adobe’s DNG converter. Therefore,
there is no loss of generality in our choice of RAW DNGs.
The real RAW file in Fig. 1 of our main paper is from the
Nikon D40 DSLR camera from the NUS dataset [4]. The
RAW image is originally in Nikon’s NEF file format and
has been converted to DNG using Adobe’s DNG converter.
Our graphics RAW image in Fig. 1 of our main paper used
the Samsung S20 FE smartphone, which natively supports
RAW DNG, as our target sensor. Note that the sRGB ren-
dering of our graphics DNG and the real RAW image were
obtained using Photoshop’s Auto White Balance (AWB)
and Auto Adjustments settings.

As stated in the main paper in Section 1, graphics render-
ings are implicitly white-balanced. Since the color of light-
ing is specified as part of the rendering, any light source
that deviates from white (e.g., a blue light) can be treated
as a desired aesthetic (i.e., a 3D graphics artist would not
change a light source to blue only to have it white-balanced
in rendering). Some graphics engines, such as Unity, have
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optional post-processing tools for color grading. For ex-
ample, it is possible to adjust the overall color cast/tint and
brightness levels after rendering. However, Unity’s post-
rendering color manipulation is intended to match rendered
graphics images to appear visually similar to other imagery
(camera captured or other graphics renderings). We are not
aware of any graphics-based synthetic data used for com-
puter vision that includes additional color grading steps af-
ter rendering. As a result, we assume that the graphics
sRGB images used by our method do not include additional
post-processing color manipulation.

We begin with details regarding network architectures,
datasets, and training parameters for all three tasks dis-
cussed in the main paper—(1) RAW denoising, (2) illumi-
nant estimation, and (3) neural ISP. We want to emphasize
that achieving state-of-the-art results on these specific tasks
was not the objective of these experiments. Each topic is an
active research area, and many DNN-based methods exist in
the literature. Instead, the goal was to evaluate the quality
of our graphics to RAW compared to alternative strategies
for different sensors and tasks. Specifically, for each task,
we chose a representative network architecture and trained
it using (1) our proposed approach; (2) UPI [3]; (3) Enlight-
enGAN [7]; and (4) real RAW image data from the target
sensors. We will describe each of these tasks in more detail
in the following.

For all our experiments in the main paper, the graph-
ics data was encoded in a gamma-sRGB color space which
is part of the sRGB standard. In the case of the SYN-
THIA dataset [9], the graphics images were rendered with a
gamma applied. For our nighttime CG dataset generated us-
ing the Unreal Engine 5 [2], the images are saved as linear-
sRGB without the gamma (an option in Unreal). We applied
a 2.2 gamma to these images for the sake of uniformity of
the data across experiments. Also note that UPI [3] and En-
lightenGAN [7] are designed for gamma sRGB images, and
applying the gamma to our dataset ensures a fair compari-
son against these methods. When applying our method, we
undo the gamma as the very first step of our pipeline (al-



though this is not explicitly shown in Fig. 3 of our main
paper).

We also note that we compared our method to an un-
paired generative method, namely EnlightenGAN [7], be-
cause supervised DNN methods, such as Cycle ISP [14] and
Invertible ISP [11], require paired RAW-sRGB images for
training. As discussed in the main paper, these methods
cannot be applied to graphics data since no ground truth
RAW images correspond to the graphics images.

S1.1. RAW denoising

For the RAW denoising experiment, we used the real
noisy RAW images from the nighttime dataset of [8]. There
are 105 noisy images at ISO 1600 and 3200. All scenes
were static and captured using a tripod. The ground truth
RAW images in [8] were computed by averaging 30 frames
at ISO 50. In Table 1 of the main paper, the graphics-
based models in the first three rows were tested on these
105 images. The real data model in the last row was trained
and evaluated on this same data using three-fold cross-
validation, with the training, validation, and testing split in-
dices defined in [8].

The Restormer architecture from [13] was used as the
denoiser. We used the official implementation from the au-
thors. The original Restormer model was designed for 3-
channel sRGB images. Since we are targeting RAW de-
noising, we modified the architecture to accept, and output,
4-channel stacked RGGB Bayer RAW images. All models
were trained for 100 epochs.

All graphics-based models used 70 images randomly
sampled from our CG nighttime dataset – 60 for training
and 10 for validation. This division was done to be consis-
tent with the models trained on real RAW images that also
received 60/10 images for training/validation during three-
fold cross-validation. Since all images (real and synthetic)
were high-resolution (≈ 3000× 4000 pixels), we found
we had sufficient patches for training the Restormer. As
mentioned in the main paper, the noise generator from [8]
was used to add synthetic noise to all models trained using
graphics-based (i.e., synthetic) RAW images. The parame-
ters of the heteroscedastic Gaussian noise model used by [8]
were estimated based on a calibration procedure. The UPI
method [3] also includes a heteroscedastic Gaussian noise
model that is fit using the read and shot noise parameters
in the RAW metadata. However, we found the results of
the calibrated heteroscedastic Gaussian noise model of [8]
to be more accurate. Therefore, for a fair comparison, we
used this noise model for all methods, including UPI.

Finally, we would like to note that while our method can
easily adopt any noise model, our focus in this work is not
on proposing a state-of-the-art RAW noise generator. De-
pending on the requirements of the task, noise can be added
to our graphics RAW image using any existing noise model.

Table S1. Illuminant estimation results using the C4 [12] network
on the NUS dataset [4]. Angular errors are reported.

Model Mean Median Top 25% Worst 25%

UPI [3] 3.39 2.69 0.85 7.06
Ours 2.79 2.12 0.70 5.97

Real 2.45 1.69 0.52 5.62

Adding noise is an optional step in our processing pipeline,
and is therefore omitted from Fig. 3 of our main paper. For
the following two tasks of illuminant estimation and neural
ISP, we do not add noise.

S1.2. Illuminant estimation

The illumination estimation task was evaluated on the
NUS color constancy dataset [4]. The ground truth illumi-
nations are available as part of the dataset through a Mac-
beth color checker chart placed in each scene. To train
the real data models, we randomly selected 125 images for
training and 25 for validation for each of the nine cameras
in the dataset. The remaining images were held out for test-
ing. The color chart was masked out both during training
and testing.

We used the CNN architecture from [6] as our illumi-
nant estimation network. Since the author of [6] has yet to
release the code, we used our implementation. We used the
same loss function, learning rate, and other training parame-
ters described in the paper. In [6], the model was trained by
cropping patches from the training images and downsam-
pled thumbnail versions of the same images in the training
set were used for validation. In our experiments, we used
patches cropped from a separate validation set to select the
best model.

For the illuminant estimation experiment, our method,
as well as EnlightenGAN [7] and UPI [3], were applied to
graphics images from the SYNTHIA dataset [9]. We ran-
domly sampled 125 images from this dataset for training
and 25 for validation. The images in the SYNTHIA dataset
have a resolution of 720×960 pixels, so we downsampled
the images from the NUS dataset by a factor of four so that
the image resolutions are roughly the same. Visualizations
of the synthetic RAW datasets generated by these methods,
as well as real RAW data corresponding to two cameras
from the NUS [4] dataset, are provided in Figs. S1 and S2.
It can be clearly observed that our method’s color distribu-
tion is closer to the real data compared to EnlightenGAN
and UPI. As evident from the quantitative results in Table 2
of our main paper, our method also performs significantly
better than our closest competitor UPI. Fig. S3 shows some
qualitative comparisons.

The illumination estimation network in [6] is a
lightweight model containing only around 1K parameters.
For comparison, we repeated the illuminant estimation ex-
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Figure S1. Samples from the synthetic RAW datasets generated by EnlightenGAN [7], UPI [3], and our method, and real RAW data from
the Panasonic GX1 camera of the NUS dataset [4].

periments of Section 4.4 of the main paper with this network
replaced with the more complex model of C4 [12]. Results
are reported in Table S1. Since C4 is a much larger capacity
model, the errors drop for all methods compared to Table 2
of our main paper. However, the same trend can be observed
with our method outperforming our closest competitor UPI
and having only a small gap to the models trained on real
data.

S1.3. Neural ISP

We used the nighttime dataset of [8] to examine our
method’s performance on the neural rendering task. We
selected the 105 clean RAW images from the dataset for
evaluation. We used the official code released by the au-
thors for training and testing. As mentioned in the paper,
we used Photoshop to render the RAW images to sRGB in-
stead of using their simplified software ISP code. We did

observe that this led to slightly different PSNR (dB) and
SSIM scores than reported in their paper [8]. Similar to the
denoising task, the real data models were trained and eval-
uated using three-fold cross-validation with the dataset par-
titions defined in [8]. The real models used 60/10 images
for training/validation. Therefore, we randomly sampled
60/10 images from our nighttime dataset to train/validate
the three graphics-based methods—EnligtenGAN, UPI, and
our method.

Qualitative comparisons are provided in Fig. S4. Ad-
ditionally, we compared against the day-to-night approach
proposed in [8], and quantitative results are presented in
Table S2. The results of other methods are reproduced
from the main paper for ease of comparison. We outper-
form competitors by a sound margin and perform on par
with the models trained on real data. As an additional com-
parison, we replaced the UNet architecture used as the ISP
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Figure S2. Samples from the synthetic RAW datasets generated by EnlightenGAN [7], UPI [3], and our method, and real RAW data from
the Samsung NX2000 camera of the NUS dataset [4].
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Figure S3. Qualitative results for our illuminant estimation task. Inset shows angular error value.

in [8] with MW-ISPNet [5]—winner of the AIM Learned
ISP Challenge at ECCV’20. Results are reported in Ta-
ble S3. Even with a more sophisticated network, similar
trends can be observed with our method producing a con-

vincing 1 dB improvement over UPI.

Visualizations of the synthetic RAW datasets generated
by day to night [8], EnlightenGAN [7], UPI [3], and our
method, as well as real RAW data from the Samsung S20 FE
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Figure S4. Qualitative results for our neural ISP task. Inset shows ∆E [10] error map and average value.

Table S2. Quantitative results on our neural ISP task on the night-
time dataset of [8].

Model PSNR ↑ SSIM ↑ ∆E ↓ [10]

Day to night [8] 35.64 0.973 2.695
EnlightenGAN [7] 35.58 0.965 3.137
UPI [3] 36.43 0.966 2.907
Ours 38.10 0.974 2.301

Real 38.32 0.974 2.133

smartphone camera, are provided in Fig. S5. Once again, it
can be clearly observed that our method’s color distribution
is closer to the real data compared to all other methods.

S2. Additional qualitative results

We show representative samples from our nighttime
graphics dataset in Fig. S6. The images are generated using
Unreal Engine 5 [2] and saved as 32-bit linear sRGB images
in EXR format with a resolution of 3000×4000 pixels. For
visualization, a 2.2 gamma has been applied to the images
in Fig. S6. Note that the Unreal graphics engine has set-
tings to model camera lens-specific effects (e.g., vignetting
and chromatic aberration). However, including such effects
in the rendering would limit the ability to reuse our CG
dataset for multiple sensors. Instead, we assume that real
RAW test images are preprocessed using DNG metadata to

Table S3. Quantitative results on our neural ISP task on the night-
time dataset of [8] using MW-ISPNet [5].

Model PSNR ↑ SSIM ↑ ∆E ↓ [10]

UPI [3] 37.80 0.970 2.267
Ours 38.95 0.972 2.014

Real 40.12 0.977 1.747

remove such degradations e.g., applying lens shading cor-
rection to remove chromatic aberration and vignetting, and
so we generate CG images without these effects.

Figs. S7, S8, and S9 provide additional examples simi-
lar to Fig. 5 in the main paper and show qualitative compar-
isons between EnlightenGAN [7], UPI [3], and our method.
The figures show synthetic RAW images generated by each
method rendered back to sRGB. Note that our objective is
not to convert the graphics image to a RAW image such that
when the synthetic RAW image is rendered back to sRGB,
it matches exactly the CG image. Instead, we can think of
the CG image as a proxy for a physical scene radiance im-
age that has been rendered to an sRGB image by an ideal
camera. Our graphics-to-RAW method aims to map this
ideal CG sRGB image to a sensor-specific RAW image un-
der a particular illumination. When the synthesized RAW
image is rendered, the photofinishing routines of the target
camera will be applied to impart the look and feel of that
camera. The parameters of these photofinishing steps are
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Figure S5. Samples from the synthetic RAW datasets generated by EnlightenGAN [7], day to night [8], UPI [3], and our method, and real
RAW data from the Samsung S20 FE smartphone camera from the nighttime dataset of [8].



Figure S6. Representative examples from our nighttime graphics dataset.

often embedded in the camera’s DNG files. Software like
Adobe Photoshop will emulate the camera’s ISP by apply-
ing these steps using the DNG metadata. As a result, there
will be subtle differences among different cameras. How-
ever, we do expect the camera-rendered images to look like
the output that the target camera would produce. An im-
proper sampling of the sensor’s CST and illumination leads
to poor results, as the RAW image values do not reflect plau-
sible RAW RGB values that match the DNG—rendering
an incorrectly synthesized RAW image results in noticeable
color artifacts and color casts in the rendered images, as ob-
served in the outputs of EnlightenGAN and UPI.

Figs. S7, S8, and S9 show two different scenes for each
camera that are synthesized under different illuminations.
For the first example corresponding to each scene, the il-
luminant is chosen to be the same for EnlightenGAN [7],
UPI [3], and our method. This illuminant sample lies close
to the distribution of the ground truth illuminants (see the
chromaticity plots in the figure). UPI’s output has a notice-
able color cast even when the illuminant is sampled close
to the ground truth illuminants. EnlightenGAN produces
undesirable color artifacts – green-colored regions on the
road, buildings, etc. For the second example under each
scene, different randomly-sampled illuminants are used for
the three methods. Our method produces more realistic
color renderings compared to other approaches.

S3. Using a single DNG

For all our experiments in the main paper, we used a set
of DNGs to construct the distribution of illuminants. Here,
we analyze the limiting case when just a single DNG from
the target sensor is available. Given a DNG from the tar-
get sensor, we first map the two illuminants corresponding
to the two pre-calibrated CST matrices stored in the DNG
metadata to the sensor’s color space. In particular, since
the CCT values of the two illuminants can be determined
from the ‘CalibrationIlluminant1’ and ‘CalibrationIllumi-
nant2’ tags, their corresponding CIE XYZ values can be
computed. Applying the inverse of each CST matrix to the
corresponding estimated CIE XYZ value gives us the loca-
tion of the two illuminants in the sensor’s color space. This
is indicated by the red and green circles in the chromatic-
ity plot of Fig. S10(a). The plot corresponds to the Sony
A57 camera from the NUS [4] dataset, which uses D65 and
Standard Light A as the calibration illuminants. We can also
generate samples between these two extreme color temper-
ature values by interpolating between the CSTs. This pro-
duces the CCT locus indicated by the small pink circles.
Finally, we can build a distribution around these samples
using equations (2) and (3) of our main paper and randomly
sample illuminant values from this distribution, as shown in
the plot.

Fig. S10(b) shows a comparison between the ground
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Figure S7. Qualitative comparisons between EnlightenGAN [7], UPI [3], and our method. The Olympus EPL6 DSLR camera from the
NUS dataset [4] is used as the target sensor. The images are from the SYNTHIA dataset [9]. Vertical bars represent the color of the
illuminant in the RAW space. Two scenes are shown under different illuminations. For each scene, the illuminant in the first example is
chosen to be the same for EnlightenGAN [7], UPI [3], and our method, while the illuminants are different across methods in the second
example, as shown by the chromaticity plots. The sRGB outputs are rendered using Photoshop under the AWB setting. Insets show
zoomed-in regions.
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Figure S8. Qualitative comparisons between EnlightenGAN [7], UPI [3], and our method. The Sony A57 DSLR camera from the NUS
dataset [4] is used as the target sensor. The images are from the SYNTHIA dataset [9]. Vertical bars represent the color of the illuminant in
the RAW space. Two scenes are shown under different illuminations. For each scene, the illuminant in the first example is chosen to be the
same for EnlightenGAN [7], UPI [3], and our method, while the illuminants are different across methods in the second example, as shown
by the chromaticity plots. The sRGB outputs are rendered using Photoshop under the AWB setting. Insets show zoomed-in regions.
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Figure S9. Qualitative comparisons between EnlightenGAN [7], UPI [3], and our method. The Samsung NX2000 DSLR camera from
the NUS dataset [4] is used as the target sensor. The images are from the SYNTHIA dataset [9]. Vertical bars represent the color of the
illuminant in the RAW space. Two scenes are shown under different illuminations. For each scene, the illuminant in the first example is
chosen to be the same for EnlightenGAN [7], UPI [3], and our method, while the illuminants are different across methods in the second
example, as shown by the chromaticity plots. The sRGB outputs are rendered using Photoshop under the AWB setting. Insets show
zoomed-in regions.



(a) (b)
Figure S10. Sampling the illuminant space when only a single RAW DNG from the target sensor is available. The chromaticity plots show
the sensor color space for the Sony A57 DSLR camera from the NUS dataset [4].

(a) (b)
Figure S11. Sampling the illuminant space when only a single RAW DNG from the target sensor is available. The chromaticity plots show
the sensor color space for the Samsung S20 FE smartphone camera from the nighttime dataset of [8].

truth illuminants, random samples drawn from a distribu-
tion constructed using the ground truth illuminant values,
and random illuminants obtained by sampling around the
CCT locus when only a single DNG is available. It can be
seen from the plot that even with a single DNG, we can well
approximate the distribution of real illuminations.

To analyze the accuracy of our single-DNG sampling
strategy, we perform the illuminant estimation task of Sec-
tion 4.4 of our main paper. The results are reported in Ta-
ble S4. For ease of comparison, the results of other methods
are reproduced from Table 2 of the main paper. Our sin-
gle DNG approach, while less accurate than our proposed
framework, still outperforms UPI and EnlightenGAN.

We also test our single DNG technique on the nighttime
neural ISP task of Section 4.5 of our main paper. The chro-
maticity plots of Fig. S11 show the illuminant sampling for
the S20 FE camera from the nighttime dataset of [8]. Here,
it can be observed that the illuminant samples from a sin-
gle DNG only partially overlap with the ground truth illu-
minants – many nighttime illuminant samples lie well be-

Table S4. Illuminant estimation results on the NUS dataset [4].
Angular errors are reported.

Model Mean Median Top 25% Worst 25%

EnlightenGAN [7] 7.01 6.82 3.48 11.07
UPI [3] 6.26 5.89 2.92 10.33

Ours single DNG 4.59 3.41 1.34 10.11
Ours 4.21 3.38 1.30 8.57

Real 3.02 2.17 0.75 6.77

yond Standard Light A, and there are very few nighttime
illuminants close to D65. The results of the single DNG ap-
proach are compared with our proposed method’s results in
Table S5. The single DNG method does not perform well
due to the gap from real nighttime illuminations.

We also conduct an ablation by varying the number of
DNGs for the tasks of illumination estimation and neural
ISP. While performance may be subpar on the neural ISP
task with a single DNG, results significantly improve with



Table S5. Quantitative comparison between the single DNG ap-
proach and our proposed framework for our neural ISP task on the
nighttime dataset of [8].

Model PSNR ↑ SSIM ↑ ∆E ↓ [10]

Ours single DNG 35.74 0.963 3.063
Ours 38.10 0.974 2.301

Table S6. An ablation on the number of DNGs evaluated on the
tasks of illuminant estimation and neural ISP.

#DNGs Illum. estimation 1 25 75 150

Mean angular error ↓ 4.59 4.50 4.40 4.21

#DNGs Neural ISP 1 10 20 40

PSNR (dB) ↑ 35.74 37.87 37.84 38.10

as few as 10 or 25 DNGs.
This final experiment demonstrates the importance of

real data samples for certain applications. This experiment
also reinforces our argument that accurate illuminant sam-
pling is critical for precise color reproduction tasks. We
applied a straightforward multivariate Gaussian function in
our framework to model the illuminant distribution. In fu-
ture work, we plan to explore more accurate task-specific il-
luminant sampling methods given additional knowledge of
the target sensor, such as the sensor’s spectral sensitivity
profile.
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