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Figure 1: The reconstruction process of LeFT on fully-
connected layers. The above example assumes that the rank
r=2.

A. LeFT on Fully-Connected Layers

Fully-connected layers of StyleGAN2 [4] architecture
consist of weight tensor WFC ∈ Rdout×din and bias
bFC ∈ Rdout . We also apply LeFT to fully-connected lay-
ers to modulate these parameters like:

ŴFC = WFC ⊙ ΓW +BW, (1)

b̂FC = bFC ⊙ Γb +Bb, (2)

where Γ{W,b} and B{W,b} denote the modulation param-
eters of LeFT which are responsible for multiplication and
addition to modulate weight and bias, respectively. Dimen-
sions of these modulation parameters are equal to the di-
mensions of the original parameters - WFC or bFC . Since
WFC is two-dimensional, we also apply a rank-constrained
decomposition similar to the way in the convolution layers
described on the main paper. The overall process is shown
on Figure 1.

Similar to convolutional layers, we decom-
pose {Γ,B}W into {M,A}out ∈ Rdout×r and
{M,A}in ∈ Rr×din . We can reconstruct the origi-
nal modulation parameters via matrix-multiplication. For
bias parameter, because of its single dimensionality, we do
not apply weight decomposition.

Domains Sketches Female Sunglasses Male Babies
FFHQ 0.735 0.253 0.571 0.309 0.531

Sketches 0.697 0.665 0.688 0.683
Female 0.523 0.266 0.480

Sunglasses 0.498 0.497
Male 0.471

Table 1: Pairwise LPIPS distance between domains. The
large value represents that the two domains are perceptually
distant.

B. Determination of Task Sequence

We constructed a sequence of tasks using perceptual dis-
tances between domains. To measure distance, we adopted
Learned Perceptual Image Patch Similarity [10] (LPIPS).
We computed pairwise LPIPS distance between two domain
pair. The results are shown on Table 1. For the most chal-
lenging setting, we organized the task order by assigning
the least similar task as the next task compared to the cur-
rent task. As a result, we were able to decide the sequence
of tasks as Sketches (T1) , Female (T2), Sunglasses (T3),
Male (T4), and Babies (T5).

C. Implementation Detail

We used StyleGAN2 [4]1 as a backbone of our frame-
work. Our training configurations came from [6, 12]. We
adopted Patch Discriminator proposed in [6]. We trained
our model using Adam optimizer [5] with the learning rate
of 0.002. The batch size was set to 4. We experimented
on a single GeForce RTX 3090 GPU. When we train our
framework on each task, we froze the pre-trained weights
and adopted LeFT modulators on them. We only saved the
lightweight LeFT modulators after learning on each task. In
the inference step, we loaded LeFT modulator to our back-
bone to generate the images of the previous tasks.

1https://github.com/rosinality/
stylegan2-pytorch



Figure 2: (left): We compared FID [1] scores after training
on each tasks and last task in lifelong few-shot image gener-
ation task. The solid lines represent the results after the last
task, while the dashed lines represent those of each tasks.
(right): We visualized the difference of FID scores.

Method Sketches (T1) Female (T2) Sunglasses (T3) Male (T4) Babies (T5)
B I B I B I B I B I

AdAM 0.250 0.395 0.342 0.428 0.352 0.490 0.229 0.443 0.407 0.498
LFS-GAN 0.354 0.405 0.481 0.546 0.584 0.631 0.472 0.561 0.556 0.627

Table 2: Comparison between LFS-GAN and state-of-the-
art AdAM on generation diversity in lifelong few-shot im-
age generation task. Here we denote B-LPIPS as ‘B’ and
I-LPIPS as ‘I’.

D. Additional Experiments on LFS Task
D.1. Comparison on Forgetting

In Figure 2, we visualized forgetting occurred in life-
long few-shot image generation task. We measured FID
scores after the each task and after the last task to inspect
the performance degradation. We compared our LFS-GAN
with the existing few-shot GANs. We found that few-shot
GANs suffered from catastrophic forgetting, while our LFS-
GAN learned multiple tasks without forgetting. Surpris-
ingly, AdAM [11] showed the reduced forgetting compared
with other few-shot GANs. We explain this phenomenon
that the weight modulators of AdAM alleviated catastrophic
forgetting by recovering a part of previous domain’s knowl-
edge.

D.2. Additional Qualitative Results

We additionally sampled images from our LFS-GAN
and state-of-the-art methods in lifelong few-shot image gen-
eration task, the results are shown on Figure 3. In this figure,
which is also shown on Figure 5 of the main paper, lifelong
GANs still generated images with a lot of distortions. On
the other hand, few-shot GANs still failed to generate sam-
ples of the previous domain (T1 ∼ T4).

In Figure 4, we also prepared other images sampled
from our LFS-GAN on diverse target domains. To test our
LFS-GAN on different source and target domain pairs, we
trained our LFS-GAN from LSUN-Church [8] for a source
domain to a sequence of target domains - Haunted houses,

Van Gogh’s house paintings, and Palace. The qualitative re-
sults are shown on Figure 5. We found that our LFS-GAN
could also generate decent images within different source
and target domain pairs.

D.3. Quantitative Comparison using I-LPIPS

In Table 2, we compared LFS-GAN with the existing
state-of-the-art AdAM on generation diversity. LFS-GAN
outperforms AdAM on both proposed and traditional met-
rics.

D.4. Experiments on Recent Generative Models

We tested recent unconditional image generation mod-
els - StyleSwin [9] and Latent Diffusion Models (LDM) [7]
on both few-shot and lifelong few-shot image generation
tasks. As shown on Table 3, both models also suffered from
both catastrophic forgetting and overfitting. Therefore the
challenge of lifelong few-shot image generation task is not
limited StyleGAN2 [4]. Moreover, when applied LeFT to
StyleSwin and LDM, both methods learned few data suc-
cessfully without any forgetting. Thus, our proposed LeFT
can be generalized on recent generative models. In this
paper, we chose StyleGAN2 as our backbone because it
still has been widely utilized and shown comparable perfor-
mance to other recent generative models like StyleSwin and
LDM in FFHQ 256x256 dataset. We compared generation
performances of above architectures in Table 4.

E. Additional Experiments on FS Task
E.1. Qualitative Results

As shown on Figure 6-11, we trained state-of-the-art
methods and our LFS-GAN framework on Sketches [6],
Female [2], Sunglasses [6], Male [2], and Babies [6] from
source domain of FFHQ [3], and on Abandoned cars from
source domain of LSUN-Cars [8]. In these figures, life-
long GANs generated distorted images and showed a mode
collapse problem in all tasks. Few-shot GANs generated
images of better quality. However, we find that there hap-
pened a lot of distortions. Our LFS-GAN can generate im-
ages with reduced distortion and rich diversity compared to
the existing state-of-the-art methods.

F. Additional Ablation Studies
F.1. Effect of Rank

In Figure 12, we compared FID scores in different rank.
In the graph, the larger ranks (orange and green lines)
tended to perform worse and diverge, while the smallest
rank (blue line) consistently achieved convergence. To test
our LFS-GAN in a semantically large domain gap between
source and target, we set the source domain as LSUN-
Church and the target domains as the existing facial do-
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Figure 3: Qualitative results on lifelong few-shot image generation task.

Method Setting Sketches (T1) Female (T2) Sunglasses (T3) Male (T4) Babies (T5)
FID B FID B FID B FID B FID B

StyleSwin FS 81.79 0.25 59.29 0.31 65.23 0.34 67.95 0.34 111.46 0.34
StyleSwin LFS 343.98 0.11 243.77 0.16 275.28 0.16 279.63 0.17 157.31 0.10

StyleSwin+LeFT LFS 65.48 0.31 27.31 0.50 21.89 0.54 33.94 0.41 48.81 0.51
LDM FS 112.86 0.20 105.73 0.25 85.32 0.34 106.09 0.23 144.79 0.32
LDM LFS 213.09 0.03 174.48 0.06 248.94 0.12 200.17 0.13 295.15 0.05

LDM+LeFT LFS 75.72 0.19 73.46 0.32 71.68 0.36 94.24 0.28 132.30 0.40

Table 3: Quantitative results of other methods on few-shot and lifelong few-shot image generation task. We denote B-LPIPS
as ‘B’.

Methods FID (↓)
StyleGAN2 3.62
StyleSwin 2.81

LDM 4.98

Table 4: Comparison of generative models on FFHQ
256x256 dataset. To evaluate FID scores, each method sam-
ples 50,000 images.

mains. The results are shown on Figure 13. Note that the
rank of 8 was the most effective in this large domain gap
setting.

λ
Tasks AverageSketches Female Sunglasses Male Babies

0.25 0.211 0.430 0.550 0.492 0.498 0.436
0.5 0.309 0.470 0.558 0.434 0.519 0.458
1 0.354 0.481 0.584 0.472 0.556 0.489
2 0.220 0.431 0.512 0.489 0.493 0.429
4 0.352 0.448 0.510 0.453 0.504 0.453

Table 5: Ablation on λ of the cluster-wise mode seeking
loss. We measured B-LPIPS on different λ.



Bias r
# of

Trainable Params.
Sketches Female Sunglasses Male Babies Average

FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID (↓) B-LPIPS (↑)

w/

1 108K 34.66 0.354 29.59 0.481 27.69 0.584 35.44 0.472 41.48 0.556 33.77 0.489
2 192K 35.19 0.237 35.96 0.447 34.85 0.537 43.58 0.417 51.53 0.479 40.22 0.423
4 358K 38.08 0.248 39.86 0.383 42.92 0.463 44.67 0.422 49.49 0.493 43.00 0.402
8 695K 35.85 0.163 40.68 0.405 45.74 0.468 54.15 0.331 64.90 0.486 48.27 0.370
16 1,380K 40.74 0.232 48.46 0.304 53.00 0.407 56.14 0.349 77.65 0.367 55.20 0.332

w/o

1 54K 37.52 0.223 34.11 0.492 33.14 0.448 40.19 0.423 52.15 0.494 39.42 0.416
2 96K 35.67 0.274 34.59 0.404 34.07 0.418 41.46 0.417 52.04 0.536 39.56 0.410
4 180K 41.66 0.256 36.86 0.402 40.87 0.423 42.62 0.370 59.98 0.556 44.40 0.402
8 350K 41.22 0.201 42.25 0.364 43.94 0.468 53.35 0.314 62.93 0.524 48.74 0.374
16 704K 44.67 0.213 46.88 0.313 46.04 0.401 57.69 0.307 66.82 0.395 52.42 0.326

Table 6: Ablation on the bias and the rank of LeFT (detailed).

Activation Sketches Female Sunglasses Male Babies Average
FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID (↓) B-LPIPS (↑)

Identity 45.25 0.285 30.77 0.475 32.66 0.525 39.64 0.462 51.00 0.509 39.87 0.451
Sigmoid 34.16 0.250 28.92 0.452 31.10 0.496 41.77 0.383 52.85 0.503 37.76 0.417

Tanh 40.86 0.292 30.92 0.458 31.24 0.523 37.97 0.442 50.25 0.486 38.25 0.440
LeakyReLU 33.43 0.277 49.65 0.451 30.77 0.505 30.96 0.449 32.39 0.504 35.42 0.437

GELU 41.94 0.322 29.67 0.472 28.55 0.541 36.84 0.418 51.88 0.488 37.78 0.448
SiLU 41.06 0.251 32.78 0.418 32.82 0.519 36.57 0.390 58.17 0.510 40.28 0.417
ReLU 34.66 0.354 29.59 0.481 27.69 0.584 35.44 0.472 41.48 0.556 33.77 0.489

Table 7: Ablation on the activation functions of LeFT (detailed).

Figure 4: Diverse samples generated from LFS-GAN. Each
column represents each target domain (i.e., Sketches, Fe-
male, Sunglasses, Male, and Babies respectively.)

F.2. The Number of Training Images

In Figure 14, we presented the performance difference
according to the number of training images. We observed
that as the number of training images increased, the gener-
ation quality also increased.
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Figure 5: Qualitative results of our LFS-GAN on life-
long few-shot image generation task. The source domain
is LSUN-Church [8], and the target domains are Haunted
houses, Van Gogh’s house paintings, and Palace.

F.3. λ of Cluster-Wise Mode Seeking Loss

As shown on Table 5, we inspected the effect of λ of our
proposed cluster-wise mode seeking loss. While we found
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Figure 6: Qualitative comparison with state-of-the-art lifelong GANs and few-shot GANs on Sketches in few-shot image
generation task.
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Figure 7: Qualitative comparison with state-of-the-art lifelong GANs and few-shot GANs on Female in few-shot image
generation task.
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Figure 8: Qualitative comparison with state-of-the-art lifelong GANs and few-shot GANs on Sunglasses in few-shot image
generation task.
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Figure 9: Qualitative comparison with state-of-the-art lifelong GANs and few-shot GANs on Male in few-shot image gener-
ation task.
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Figure 10: Qualitative comparison with state-of-the-art lifelong GANs and few-shot GANs on Babies in few-shot image
generation task.
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Figure 11: Qualitative comparison with state-of-the-art lifelong GANs and few-shot GANs on Abandoned cars in few-shot
image generation task.



Figure 12: Comparison of FID scores in different ranks.
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Figure 13: Qualitative results on the distant domain pair
(LSUN-Church → Male).
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Figure 14: Qualitative results on different number of train-
ing images.

Maximize Sketches Female Sunglasses Male Babies Average
∆w/∆z ∆F/∆w ∆I/∆w

0.221 0.427 0.499 0.418 0.551 0.423
✓ 0.282 0.469 0.473 0.447 0.511 0.436

✓ 0.267 0.450 0.526 0.397 0.486 0.426
✓ 0.278 0.446 0.537 0.415 0.500 0.435
✓ ✓ ✓ 0.354 0.481 0.584 0.472 0.556 0.489

Table 8: Ablation on the maximization target of the cluster-
wise mode seeking loss (detailed). We measuresd B-LPIPS
on different maximization target in our proposed cluster-
wise mode seeking loss.

that λ=1 was the most effective, our LFS-GAN showed
comparable performance on different λ values.

F.4. Detailed Results of Ablation Studies

We described the detailed results of ablation studies
which were previously stated in the main paper on Table
6, 7, and 8. We found that using bias, the rank of 1,
and ReLU activation generally showed the superior perfor-
mances compared to other options. Furthermore, we con-
firmed that maximizing the relative distance of intermediate
latent vectors (w), feature maps (F ), and generated images
(I) was the most effective for enriching diversity.
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