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1. LiDAR Intensity

Source Target (no DA) source model Intensity Used mIoU (%) ↑

KITTI

KITTI

MinkowskiNet ✓ 66.72
✗ 60.24

SalsaNext ✓ 58.49
✗ 55.81

USL

MinkowskiNet ✓ 38.56
✗ 41.51

SalsaNext ✓ 23.62
✗ 36.95

Table 1. Generalization performance of MinkowskiNet and Sal-
saNext trained with and without intensity values as input. We train
the source models on SemanticKITTI (KITTI) and evaluate their
performance on SemanticUSL (USL). Dropping intensity leads to
significantly improved generalization performance on the target
domain.

Although LiDAR intensity provides additional informa-
tion for distinguishing geometrically similar objects, we
find each LiDAR sensor has significantly different inten-
sity ranges and distribution from others. While prior works
apply various techniques to utilize the intensity as an addi-
tional input [2, 4], we view intensity matching to remain a
non-trivial problem on its own. As we show in Table 1, us-
ing intensity results in degraded generalization performance
of the source model - an average drop of 8.1% mIoU be-
tween MinkowskiNet and SalsaNext.

Furthermore, as our framework re-introduces intensity of
the target domain as an additional input during the student
model training, the proposed LiDAR-UDA method is still
able to utilize the intensity information of the target domain
in a transferable manner.

2. Classwise mIoU Analysis on SemanticKITTI
and nuScenes

We present classwise mIoU results of our method and
the source model for the SemanticKITTI ↔ nuScenes DA
scenario in Table 2. Our method achieves significant im-
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provements over the source model in most classes, indi-
cating its robust generalization capability. For example, in
SemanticKITTI→nuScenes, our method improves over the
source model by 36.06% IoU in Pedestrian and 21.21% IoU
in Bus classes. In nuScenes→SemanticKITTI, our method
improves by 31.92% IoU in Drivable and 28.21% IoU in
Car classes.

3. LAM Analysis: Weight Distributions
To gain better insight of the weighting dynamics behind

LAM, we collected statistics of the weights predicted by
LAM in the SemanticKITTI→nuScenes experiment on var-
ious slices of the target dataset, visualized as histograms in
Figures 1 to 3.

• Temporal offset: Figure 1 shows weight histograms
for different temporal distances from the current frame
t. We find that points with a shorter temporal distance
to t (3rd histogram) have relatively higher weights.

• Distance from Sensor: Figure 2 shows that LAM fa-
vors points closer to the sensor origin in their corre-
sponding LiDAR scan (first row), giving them higher
weights. This matches the intuition because the
model’s accuracy typically decreases for objects far-
ther away from the sensor due to the sparsity of Li-
DAR point cloud. To illustrate the significance of this
feature, we point out that the aggregated point cloud
combines 36 seconds of LiDAR data so if the vehicle
speed is as low as 10 miles per hour, the distance vari-
ation of points within an ϵ-ball to their sensor location
can exceed 150 meters.

• Distance from center: Figure 3 reports on the dis-
tance from the center of ϵ-ball (||p − p′||2), which
shows only a slight decay in the assigned weights as
the distance increases, suggesting that LAM depends
more on other factors.

Our analysis provides a limited view of predicted weights
within each slice, and we overall observe that LAM does
not soley rely on only one of the input features above but
the combination of all input features to make predictions.



Source Target Method Drivable Sidewalk Terrain Pedestrian Vegetation Bicycle Bus Car Motorcycle Truck mIoU

KITTI

KITTI Source 87.66 68.75 65.17 18.63 90.12 0.31 15.53 90.17 3.70 17.99 45.80

NUS

Source 79.19 32.22 21.72 4.72 73.97 0.07 4.46 55.32 3.35 2.46 27.75
SqueezeSegV2∗ [4] - - - - - - - - - - 10.10

SWD∗ [3] - - - - - - - - - - 27.70
Complete & Label [5] - - - - - - - - - - 31.60
Graph Matching [1] - - - - - - - - - - 37.30

LiDAR-UDA (Ours) 87.44 42.31 47.88 40.78 83.22 0.85 25.67 73.48 15.86 0.90 41.84

NUS

NUS Source 91.44 52.3 58.33 48.05 86.42 3.00 24.23 80.39 28.88 34.18 50.72

KITTI

Source 33.77 2.81 30.05 12.56 80.94 0.45 4.95 57.98 4.40 3.82 23.17
SqueezeSegV2∗ [4] - - - - - - - - - - 13.40

SWD∗ [3] - - - - - - - - - - 24.50
Complete & Label [5] - - - - - - - - - - 33.70
LiDAR-UDA (Ours) 65.69 6.07 54.05 16.49 85.65 0.00 3.15 86.19 13.87 9.30 34.04

Table 2. Classwise mIoU (%) of methods on KITTI to Nuscnes and nuScenes to KITTI adaptation scenarios.
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LAM Weight Histogram With Temporal Offset: [-1.0, -0.6)
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LAM Weight Histogram With Temporal Offset: [-0.6, -0.2)
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LAM Weight Histogram With Temporal Offset: [-0.2, 0.2)
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LAM Weight Histogram With Temporal Offset: [0.2, 0.6)
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LAM Weight Histogram With Temporal Offset: [0.6, 1.0)

Figure 1. Histogram visualization of LAM weights applied to Bϵ neighbors based on their temporal distance of current frame t normalized
between (−1,+1).
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LAM Weight Histogram With Distance From Sensor: [0.0, 21.2)
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LAM Weight Histogram With Distance From Sensor: [21.2, 42.4)
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LAM Weight Histogram With Distance From Sensor: [42.4, 63.6)
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LAM Weight Histogram With Distance From Sensor: [63.6, 84.8)
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LAM Weight Histogram With Distance From Sensor: [84.8, 106.0)

Figure 2. Histogram visualization of LAM weights applied to Bϵ neighbors based their distance to the sensor location in their corresponding
LiDAR scan.
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LAM Weight Histogram With Distance From Center: [0.0, 0.04)
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LAM Weight Histogram With Distance From Center: [0.04, 0.08)
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LAM Weight Histogram With Distance From Center: [0.08, 0.12)
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LAM Weight Histogram With Distance From Center: [0.12, 0.16)
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LAM Weight Histogram With Distance From Center: [0.16, 0.2)

Figure 3. Histogram visualization of LAM weights applied to Bϵ neighbors based on their distance.
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