
STEPs: Self-Supervised Key Step Extraction and Localization from Unlabeled
Procedural Videos

Anshul Shah1 Benjamin Lundell2 Harpreet Sawhney2 Rama Chellappa1

1 Johns Hopkins University 2 Microsoft Mixed Reality
{ashah95, rchella4}@jhu.edu {benjamin.lundell,harpreet.sawhney}@microsoft.com

In this Supplementary material, we provide additional
empirical studies, analyses and details. We list below the key
sections.

1. Feature extractor : Details (A.1) and results with addi-
tional modalities on Ikea dataset (A.2).

2. Bootstrapping : Alternate variants (B.1)

3. Temporal encoder: model details (C.1), Avoiding triv-
ial solutions and other baselines (C.2).

4. Temporal sampling augmentation : approach (D.1),
effect of varying video extent (D.2)

5. Miscellaneous analyses: How long to train (E.1), Ef-
fect of inter-video alignment (E.2), TC3I with multiple-
cue training (E.3), Additional results on loss abla-
tion (E.4)

6. Key Step extraction: Sampling variants (F.1), visual-
izations (F.3)

7. Practicality of the approach : Time and resource re-
quirements (G)

8. Use of > 2 modalities during training (H)

9. Additional details: Datasets (I.1), Additional informa-
tion on KSL baselines (I.2), Evaluation protocols (I.3),
Metrics (I.4), Hyperparameters (Sec. I.5)

10. Code: Overall flow (J).

11. Limitations and future work (K)

12. Negative Societal Impact (L)

A. Feature extractor:
A.1. Details

Our approach allows us to use off-the-shelf feature ex-
tractors instead of finetuning them. This is especially impor-
tant in a data-scarce and resource constrained setting. Note
that unlike some prior works, we work with average pooled
spatial features for quick training and lower storage require-
ments.

All results except Table 4 in the main paper used Resnet 50
as m1 and RAFT/OF features as m2.
Res50: Features are extracted from the conv5c layer of a
ResNet-50 [10] backbone. We use ImageNet pretrained mod-
els following the prior works [6, 9, 15].
RAFT/OF: RAFT [20] is a model trained for extracting op-
tical flow from a pair of images. We extract motion features
from the pre-trained feature encoder (last recurrent update).

For experiments in Table 4:
Gaze: For sensor derived modalities, we consider the on-
device hardware/software block as our feature extractor. For
example, in the Meccano dataset, gaze data is made available
as the x & y location of the gaze mapped to the image coordi-
nates along with a confidence score. Since gaze is recorded at
200Hz compared to 12Hz for the visual stream, we associate
each from of the video to 16 (200/12) frames thus giving
us a 3× 16 = 48 dimensional gaze vector corresponding to
each frame.
Depth: Depth maps are encoded using a pretrained ResNet-
50 and features extracted from the Conv5c layers are used
for training.

A.2. Additional Results

Separating feature extractor step from the SSL lets us
use any available off-the-shelf backbone. We next explore
alternate feature extractor (Pose) for the IkeaASM dataset
Table 1.
Pose: We extract human pose coordinates using Open-
Pose [3]. The pose coordinates of each joint are stacked
and used as input to the temporal encoder. We also experi-
mented with using features from a pre-trained pose-based
action recognition model. Specifically, we used features ex-
tracted from a FineGym and NTU pretrained PoseC3D [5]
model. We empirically found that this approach gave us
a similar performance as using pose coordinates and thus
we use coordinates for our pose-based experiments in the
paper. We use the pose modality for experiments with the
Ikea dataset due to the nature of videos (third person, static

1

Table 1. Comparison between different feature extractors for Ikea
dataset. We use multi-cue features for training and evaluate on
single/multi-cue features for inference.

Training Inference Phase CLS 1.0
Res50+Pose Res50 30.6
Res50+Pose Pose 30.3
Res50+Pose Res50+RAFT 31.9
Res50+RAFT Res50 31.5
Res50+RAFT RAFT 30.3
Res50+RAFT Res50+RAFT 31.7

camera). For the unconstrained videos of the other datasets,
we make use of our RAFT-based feature extractor.

In Table 1 we compare the performance of different fea-
ture extractors for the task of phase classification on the Ikea
dataset. During inference, for a fair comparison to the prior
works we use the appearance feature alone unless specified
otherwise. We also experiment with use of multiple modali-
ties at inference (like Table 4 main paper) and use a simple
concatenation of features (e.g. Res50 + RAFT). We see that
use of multiple modalities at inference leads to additional
gains.

B. Bootstrapping

B.1. Alternate variants

In the main paper, we discussed our proposed technique
of improving the set of positives by using raw features to
bootstrap the temporal windows. We noted (Section 3.3,
main paper) that our final window used W̃ was a union of
the σ-window and the one obtained through bootstrapping.
We refer to this approach as ‘Union-Window’. In this section
we show our results with some alternate variants that we
tried.
Only the sampled window: In this approach we discard
the σ-window for the loss computation and use only the
bootstrapped window W ′.
Union Window, only modifying negative set : Here, the
positives come from the σ-window but instead of using the
complement as negatives, we also remove the potential false
negatives obtained using W̃ .

In Table 2, we compare these three variants. We see that
our approach of using the union window for both positive and
negative set shows the best performance. Using the sampled
window performs since it doesn’t necessarily impose the
temporal constraints for the loss function and ignore the
σ-window. Use of the union window only to generate the
negative set doesn’t modify the false negatives as positives
and shows poor performance.

Table 2. Comparing bootstrap variants on Meccano dataset. We
compare variants for using the bootstrapped window. We notice that
using the union window for defining both positives and negatives
leads to the best results.

Variant F-1 IoU
No bootstrap 32.1 14.9
Only sampled window 34.4 16.3
Union Window for negative 34.6 16.3
Union Window for positive and negative 36.4 18.0

C. Temporal Encoder

C.1. Model details

We train a separate temporal encoder per modality. Each
temporal encoder is a multi-headed transformer model. The
input to the temporal encoder are raw features pmi

t ∈ RDi .
We use a two layer vanilla transformer with two heads. We
do not use causal masks. The temporally adapted sequence
(q̃mi

t ∈ RD) is then passed through a two layer MLP to
obtain features (qmi

t ∈ RD) used for computing the loss. D
is set to 128.

C.2. Analysis : Positional Encoding

In Table 3, we analyse different ways of encoding tempo-
ral information into the model. Since transformers on its own
does not have any information about the relative position of
various steps in the temporal dimensions, we add a sinusoidal
position encoding [21] to the input sequence before adapting
it with the transformer. Since our model will be subsequently
trained with losses that enforce temporal consistency, any
learnable embedding before adding position encoding might
learn to ignore the raw features (Table 3 STEPs w/ MLP
before PosEnc). Hence, we add this embedding to the raw
feature directly to avoid a collapse of the learned representa-
tions. Note that removing the positional encoding performs
worse (STEPs w/o PosEnc) which shows the importance of
encoding temporal information into the feature sequence.
We see the same trend when using a loss with and without
bootstrapping. Our final approach with bootstrapping out-
performs other baselines. While this baseline still trains a
temporal encoder, another potential baseline is to use the raw
features directly for evaluation. This baseline (Raw features)
performs much worse showing the importance of adapting
the features through our training loss. .

D. Temporal Sampling augmentation

D.1. Sampling approach

Most works in Video-SSL work with short clips. We work
with procedures which are minutes long, often with steps that
might repeat in the future. Our approach trains a light-weight
temporal encoder on pre-extracted features thus enabling use

Table 3. Comparing different variants of positional encoding on
Meccano dataset. We see the benefits of using a positional encoding
during training to impart ordering information. The positional en-
coding is added directly to raw features thus precluding the model
from learning trivial embeddings. We see similar trends for model
w & w/o the bootstrapping window.

Approach F1 IoU
TC3I [1] 18.1 7.8
Raw Features 20.1 8.6
MC2 loss
STEPs w/o PosEnc 27.7 12.7
STEPs w/ MLP before PosEnc 28.8 12.9
STEPs 34.2 16.6
BMC2 loss
STEPs w/o PosEnc 32.2 14.7
STEPs w/ MLP before PosEnc 32.8 15.3
STEPs 36.4 18.0

of long-range dependencies. Note that since our approach
works with features instead of raw videos/images, we cannot
employ any input-space augmentations like random resize
crop, color jitters, blurring etc during SSL training. We ap-
ply a temporal sampling augmentation but on features and
do not generate multiple ‘views’ of the video. Instead, we
extract positives and negatives from a single sample of the
video. Our sampling strategy during training borrows ideas
from TSN [22] but applies it to feature sequences. Given the
complex video, we first randomly select a start tstart and
end frame tend. These are sampled based on a hyperparam-
eter of how much temporal extent of the video we want to
cover during training. Next, the selected extent is uniformly
divided into N chunks. A feature frame from each chunk
is randomly sampled which is then used in the subsequent
model. Note that the corresponding time stamp of the sam-
pled frame is utilized in positional encoding Appendix C.2.
The flow is presented in Fig. 1.

D.2. Effect of temporal extent

Given a temporal extent β, tstart and tend are sampled
from [1, · · · , T] such that tend − tstart ≃ βT All experi-
ments in the main paper use β = 1 which implies tstart = 1
and tend = T . In Table 4, we experiment with different tem-
poral extents and the effect on performance on the Meccano
dataset. We note that β = 1 gives the best performance.

E. Miscellaneous Analyses
E.1. How long to train?

We train all Meccano models for 300 epochs (Ap-
pendix I.5). In this section we explore the effect of longer
training of our models. We train our model for longer on the

Table 4. Comparing temporal extents. We sample our features from
varying temporal extents of the video. β denotes the extent of
the whole video used for sampling. Using β = 1 shows the best
performance.

Temporal Extent (β) F-1 IoU
0.2 24.7 10.7
0.4 26.7 11.2
0.6 30.6 13.9
0.8 35.1 17.0
1.0 36.4 18.0

Meccano dataset. With a learning rate drop at 400 epochs,
the model obtains F1 score of 37.8 and IoU of 18.25 at 500
epochs which shows that the model gradually improves even
beyond 300 epochs but the marginal gains are low as is often
observed in self supervised learning.

E.2. Effect of inter-video alignment

Our approach shows strong performance compared to
prior works without using any alignment-based loss. This
lets us train even on a single video. An additional video-
alignment objective is complementary to our contributions.
Upon including inter-video alignment loss (soft-DTW [9]),
we notice that the IoU improves by 0.7 with no improvement
in F1 score.

E.3. TC3I with multiple modalities

Use of multiple modalities during training can benefit
other approaches too. We experiment with including multi-
cue training with the publicly available implementation of
TC3I. Using RAFT (Optical flow) cues during training im-
proves IoU on Meccano from 7.8 to 8.6. We notice that
STEPs still faares much better since it can capture long
range temporal dependencies and benefit from bootstrapping
of raw features.

E.4. Additional results on loss ablation

In Table 5, we present the effect of various components of
our approach on four egocentric datasets. We see that our pro-
posed losses brings an improvement to the final performance
in most cases.

F. Key Step extraction
F.1. Using alternate sampling approach for key step

extraction

Separating representation learning from generation al-
lows us to easily use alternate approaches to extract key
steps. We experiment with the approach ILS-SUMM [18]
which implements iterative local search for unsupervised
video summarization. They recover an optimal summary by

Modality extracted features for entire video :

Divide into N uniform chunks

Sample randomly from each chunk

Feature sequence use for training

Figure 1. Temporal sampling. We illustrate the sampling applied during training. We first set a temporal extent. This is divided into N equal
sized chunks. A feature frame is sampled at random from each chunk which is used to contruct the input sequence.

Table 5. Effect of different losses. In this experiment, we evaluate the effect of our different loss terms on the four egocentric datasets. We
see that our loss terms leads competitive performance compared to the baseline.

CMU-MMAC EGTEA G. Meccano EPIC-Tents
Approach Multi-Cue training BMC2 F1 IoU F1 IoU F1 IoU F1 IoU

Random - - 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5
Uniform - - 18.4 6.1 20.1 6.6 16.2 6.7 16.2 7.9
Bansal et al. [1] 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3
STEPs ✗ ✗ 26.2 10.7 29.5 12.2 29.9 14.1 37.1 20.0
STEPs ✗ ✓ 25.0 9.6 29.6 12.4 33.1 15.8 37.7 19.0
STEPs ✓ ✗ 27.7 11.0 30.8 12.4 32.0 15.3 41.2 21.9
STEPs ✓ ✓ 28.3 11.4 29.0 11.6 36.4 18.0 42.2 21.4

solving a constraint optimization problem on the total sum-
mary duration. The approach leads to plausible key steps
(Fig. 2) which show the effectiveness of our learning algo-
rithm. We use our proposed clustering & sampling steps
since they provide more user control for key step extraction
focused on task-based videos while ILS-SUMM provides
fewer controls. For example, the k-Means clustering algo-
rithm can easily be swapped with an alternative algorithm
like FINCH [17] which can automatically detect the number
of clusters. In Figure 3, we show results by swapping the
k-Means in Algorithm 1 with FINCH. For an easy compar-
ison with other presented results, we sort and visualize 10
key steps which have the least distance to the cluster centers.
We see that use of this alternate clustering algorithm gives
plausible key-steps. The example shows that our algorithm
allows for easy customization based on user requirements.

F.2. Alternative KSE metrics

Prior works like [12] proposed metrics for evaluating
video summarization systems. We explore the evaluation
of representation and diversity metrics from [12] for the
extracted key-steps on Meccano dataset. We compare these
scores to key steps extracted using TC3I’s features for the
same number of steps extracted. We notice that our approach
leads to a better representation score (53.1 vs 48.2) and
higher min-disparity (diversity) score (6.52 vs 4.54). Since
we are dealing with procedural videos rather than generic
home-videos, we believe that KSL is a more apt proxy for
KSE. Following prior works, we evaluate on KSL metric in
this paper.

F.3. Additional KS visualizations

In Fig. 4 and Fig. 5, we visualize the extracted key steps
for a video of Meccano and EPIC-Tents respectively. We
observe that the extracted key steps are plausible for the task
of assembling a toy bike and assembling a tent respectively.

Figure 2. Alternative sampling approaches. We use our extracted features with ILS-SUMM to extract a 10 step summary of a person
assembling a Kallax Shelf Drawer. The approach leads to plausible key steps showing the efficacy of our features. We use our proposed
clustering & sampling steps since they provide much more user control for key step extraction focused on task-based videos.

c

Figure 3. Alternative clustering algorithm. We replace k-Means with FINCH [17] and visualize the top-10 key steps based on distance to the
cluster centers. While this clustering approach seems to miss a step, we see that the results are still plausible. Our algorithm allows for easy
customization based on user requirements.

G. Practicality of the approach

The use of off-the-shelf feature extraction without fine-
tuning enables fast transformer encoder training. We can
train a model on 17 Meccano videos for 300 epochs in under
6 minutes on a single Nvidia A5000 GPU. While we use a
24GB GPU, for our set of hyperparameters, the training run
needs only ∼ 3.5GB GPU memory. We use a single GPU
for all our experiments. Our small memory footprint (1.8M

parameters for our model compared to 23M in the Res50
encoder alone) along with the use of off-the-shelf features
allows training with large temporal extents unlike approaches
which rely on finetuning. We note that precomputing of
features is also quite fast. We use standard pipelines for
feature extraction. For example, using a single GPU, it takes
less than 15 minutes to extract Resnet50 appearance features
for all frames (> 300k) of Meccano dataset. Further, some
cues like gaze do not need any feature extraction and can be

Figure 4. KS Visualization for Assembing a Toy Bike (Meccano dataset). We use the features extracted using our approach and extract a 20
step summary of assembling a toy model of a motorbike. We use the cluster and sample approach to generate these. We notice that the keys
steps are plausible.

Figure 5. KS Visualization for Assembing a tent (EPIC-Tents dataset). We use the features extracted using our approach and extract a 20 step
summary of assembling a tent. We use the cluster and sample approach to generate these. We notice that the keys steps are plausible.

Table 6. Training with N > 2 modalities

Method Training Inference F1 IoU
Training using 3 modalities

STEPs RGB+OF+Gaze RGB 37.8 18.7
STEPs RGB+OF+Depth RGB 38.7 19.0
STEPs RGB+Gaze+Depth RGB 37.8 18.7

Training using 4 modalities
STEPs RGB+OF+Gaze+Depth RGB 40.2 19.8

used in the raw form.

H. Use of multiple modalities during training
In the main paper we use 2 modalities for all of our ex-

periments. In this section, we train our approach using > 2
modalities while performing inference on the RGB/appear-
ance modality alone for an easy comparison. We present our
results in the Table 6. We observe that use of additional
modalities benefits from longer training and we train these
models for 700 epochs with a LR drop at 600. For simplicity,
in these experiments, we set

λuv =

 1, for u = v
1, for u = RGB, v ̸= RGB
0, otherwise

We see that using additional modalities during training con-
sistently improves performance. In particular, we note that
depth and optical flow are especially helpful. Finally, using
all four modalities during training gives further improve-
ments and gives the best results.

I. Additional details:
I.1. Dataset details

I.1.1 Egocentric procedure learning datasets

We use four egocentric datasets to validate our approach. We
use the publicly available annotations from the authors of
CnC [1] for our experiments on these datasets.
CMU-Kitchens/MMAC [4]: This dataset contains record-
ing of subjects performing the tasks involved in cooking and
food preparation. A kitchen was built and twenty-five sub-
jects were recorded to cook five different recipes: brownies,
pizza, sandwich, salad, and scrambled eggs.
EGTEA Gaze+ [14]: Extended GTEA Gaze+ is a large-
scale dataset with modalities like visual, gaze tracking, audio
etc. It consists of activities from 86 unique sessions of 32
subjects. The dataset includes seven cooking recipes : Con-
tinental Breakfast, Pizza, Bacon and eggs, Cheese burger,
Greek salad, Pasta salad and Turkey sandwich.
Meccano Dataset [16]: Meccano is a multimodal egocentric
video dataset of people assembling a toy bike. The dataset

is captured with multiple modalities like RGB videos, depth
videos and gaze signals. We use this dataset for most abla-
tions and analyses.
EPIC-Tents Dataset [11]: This is an outdoor egocentric
video dataset of people assembling a camping tent. The
dataset is collected from 29 participants.

I.1.2 Third-person procedure learning datasets

ProceL Dataset [8]: consists of videos from 12 procedures
like replacing iPhone battery, setting up Chromecast etc. The
dataset consists of about 720 videos with 8 key-steps on
average. The videos are obtained from YouTube. We use
the same experimental setup and features as used in [1]
following their official implementation.
Crosstask Dataset [24]: is an instructional video dataset
with 18 primary tasks. The dataset consists of 2750 videos
with 7 keys-steps on average. We use the same experimental
setup and features as used in [1] following their official
implementation.
Ikea-Assembly Dataset [2]: comprises of complex furniture
assembly tasks performed by multiple people across views.
The challenging tasks are composed of multiple sub-tasks
like flipping the table, attaching the leg etc. While captured
in a controlled setting, the dataset consists of large temporal
variations and includes sections where no activity takes place.
This dataset closely mimics the practical AR/VR scenario
that we discuss in the introduction of the main paper. We
follow the same experimental setting as the prior work [9,
15] for a fair comparison. The top-view was used for all
experiments. Kallax Shelf-Drawer assembly task split was
used unless otherwise specified.

I.1.3 Other datasets

PennActions Dataset [23]: The dataset consists of 13 action
categories from the PennAction dataset as used by authors
in [6, 9, 15]. The actions are composed of humans doing
sports and exercises and are composed of 2-6 phases per
action. While this is not strictly a procedure learning datasets,
we apply our method to this approach to show the wide
applicability.

I.2. More information on KSL baselines

Random: Following [1], we assign a random label to each
frame from a uniform distribution with K values. These K
values represent K steps.
Uniform: Here, we uniformly divide the video into K chunks
and assign a unique label to each chunk. We found this to be
a stronger baseline than ‘Random’.
Bansal et al [1]: Here we directly report the best results
obtained by the most relevant prior work. This approach
trains an embedding network using a combination of losses.
The frames for evaluation videos are then assigned to K

labels using a ProCut module which relies on soft-clustering.
We report their best results for each compared dataset.

I.3. Evaluation protocols

We follow the same evaluation protocols as prior works
for a fair comparison. For CMU-MMAC, EGTEA-Gaze+,
EPIC-Tents, Meccano, ProceL and CrossTask, we follow the
evaluation protocol used in CnC [1]. Videos were sampled at
FPS/2. We use the improved metric proposed in by authors
of [1] which evaluates the IoU and F1 score per-key step and
averages them. Closely following [1], this modified protocol
is not used for CrossTask and ProceL datasets where standard
protocol [7, 8, 13, 19] of calculating it for all steps together
is used. For experiments on IkeaASM and PennActions,
we closely follow the protocols laid out in VAVA [15] and
LAV [9]. For IkeaASM, evaluation was performed on frames
sampled at 8FPS, while for PennActions, they are sampled
at original FPS during evaluation.

I.4. Metric details

Here we present additional details on the various metrics
used to evaluate our models. For all metrics, a higher score
implies a better performance.
Key-step localization: We follow the same experimental
setup as [1]. We first find a one-to-one matching between
steps in the ground truth and clustering predictions from our
method using the Hungarian algorithm. Recall is computed
as the ratio of number of frames having the correct key
step prediction to the ground truth number of key frames
across all key steps. Precision is the ratio of the number of
correctly predicted frames and number of frames predicted
as key steps. F-1 score is the harmonic mean of recall and
precision.
Phase Classification: We calculate the average per-frame
phase classification accuracy obtained by training an SVM
on the phase labels on our temporally adapted per-frame
features. Following prior works [6, 9, 15], we evaluate the
model on varying amounts of labels used for SVM training
(0.1, 0.5 and 1.0).
Kendall‘s Tau: This is a statistical measure which is used to
determine the temporal alignment between two sequences.
Since this metric assumes a strict monotonic order of actions
and we report it only for the PennActions dataset. Given
two videos, we first sample a pair of frame features qi, qj
from the first video and retrieve the corresponding closest
features in the second video of the same task qi′ , qj′ . The
frame indices i, j, i′, j′ as concordant if (i− j)(i′ − j′) > 0
and discordant other wise. Kendall’s Tau is calculated as

K.T =
#concordant pairs − # discordant pairs(

n
2

) (1)

Please refer to [6] for further details.

Table 7. Common hyperparameters used for training STEPs models

Hyperparameter Value
Clustering Algorithm k-Means
Clusters 7
λuu 1
λuv 1
margin ζ 2.0
Learning rate 1E-3
Train modalities Res50 + RAFT-OF
Inference modalities Res50
Number of heads 2
Dimension of hidden layers 128
Number of transformer layers 2
Temporal extent β 1.0
Optimizer Adam

I.5. Hyperparameter details

We use PyTorch for training our models. In Table 7, we
list the common per-dataset hyperparameters used for our
experiments in Tables 1, 2 & 3 of the main paper. Following
are some additional training and implementation details.
Batch size: We use a batch size of 4 for all datasets except
CrossTask, ProceL and PennActions which use a batch size
of 16.
Temporal window size: We use a window size of 10s for
all datasets except PennActions. Due to the small temporal
lengths in that dataset, we instead use a window size of 4
frames for that dataset.
Epochs: We train models on Meccano and EGTEA for
300 epochs and on EPIC-tents and CMU-Kitchens for 150
epochs. Models on CrossTask and ProceL were trained for
100 epochs due to large size of the dataset. Models on Ikea
were trained for 300 epochs while those for PennActions
were trained for 400 epochs.
Modality for bootstrapping: We obtain the best results
when we use RGB modality for bootstrapping on Meccano,
EPIC, and ProceL datasets. Raw RAFT features were used
for CrossTask while a concatenation of RGB and RAFT were
used for CMU Kitchens, EGTEA, Ikea and PennActions.
Number of chunks: We use 1024 chunks for all datasets
except CrossTask, ProceL and PennActions. Both CrossTask
and ProceL use 512 chunks. Due to the very short lengths of
videos in PennActions, we determine number of chunks as
0.8 of average video length in that dataset.
Average over runs: Since most of the datasets we work
with are small in size, we report all results for Meccano,
EPIC-Tent, CMU-Kitchens, EGTEA and Ikea as average of
3 training runs from random seeds.
Key step extraction details For our key step visualizations,
we first cluster the video features. For k-Means, we set num-

Algorithm 1 Overall flow
Input: Video dataset V
Output: Adapted features q̃ and Key Steps ak for each video

1. Extract and store raw features
Pi = FeatureExtractori(V)

2. Train STEPs model using pre-extracted raw features
for epoch ep = 1, . . . , L do

Temporally sample features and create a minibatch
p1, · · · , pi = TemporalSampling(P1, · · · , Pi)
Forward pass through per-modality temporal encoders
q̃1, · · · , q̃i = f1(p1), · · · ,fi(pi)
Project features using per-modality MLP and L2 normalize
q1, · · · , qi = Project1(q̃1), · · · ,Projecti(q̃i)
Obtain bootstrap window using σ-window and raw features
W̃ = BootstrapWindow(pi,σ)
Calculate BMC2 loss and backpropagate
loss = BMC2(q1, · · · , qi, W̃)

end for

3. Evaluate for downstream task
Extract Key Steps {ak} for video v using learned temporal encoder fi
{ak} = KeySteps(v, fi)
or evaluate for Key Step Localization on dataset V using learned temporal
encoder fi
IoU, F1 = KeyStepLocalization(V, fi)
return {ak}k=K

k=1 , q̃

ber of clusters as the number of phases in the task. We use a
background rejection ratio of 0.1. Threshold time between
steps (γ) is chosen as 2 seconds. A step is sampled from
each sub-segment based on distance to the cluster center.
For visualization we display top10/top20 key-steps based
on the distance to center for each sampled key step. For
KS extraction results on the Ikea dataset, we show the crop
around the person instead of the whole frame for clarity. The
models were trained and evaluated were not evaluated using
the person-crop.

J. Overall flow

We illustrate the overall flow of our approach in Algo-
rithm 1.

K. Limitations and Future work

Our approach is the first step towards Key Step extraction
for AR/VR applications where many of the modalities are
available for free through on device sensors/modules. While
this is generally true, extracting and parsing these modal-
ities requires pre-trained feature extractors and/or domain
knowledge. To reduce storage requirements, we work with
average pooled features which precludes the model from
using spatial attention. Next, while our approach can work
with even a few videos, the performance gap suggests that
incorporating recent advances in few-shot learning, or use
of highly contextualized embeddings like CLIP can help fur-

ther improve the performance. Finally, Key steps for a task
can be very subjective and vary based on application. When
deploying these models, key steps might have to be validated
via device usage experiments and the model appropriately
tuned.

L. Negative Societal Impact
The paper proposes an approach to extract key steps for

unlabeled procedural videos. As such, we do not perceive any
negative ethical or societal impact since experiments were
done on using publicly available datasets and models. That
said, while deploying such models in the wild, consent of all
individuals must be taken to avoid leaking any potentially
sensitive information.

References
[1] Siddhant Bansal, Chetan Arora, and CV Jawahar. My view

is the best view: Procedure learning from egocentric videos.
In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIII,
pages 657–675. Springer, 2022. 3, 4, 6, 7

[2] Yizhak Ben-Shabat, Xin Yu, et al. The ikea asm dataset:
Understanding people assembling furniture through actions,
objects and pose. In IEEE/CVF WACV, pages 847–859, 2021.
6

[3] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2D pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 1

[4] Fernando De la Torre, Jessica Hodgins, Adam Bargteil, Xavier
Martin, Justin Macey, Alex Collado, and Pep Beltran. Guide
to the carnegie mellon university multimodal activity (cmu-
mmac) database. 2009. 6

[5] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai.
Revisiting skeleton-based action recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2969–2978, 2022. 1

[6] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. Temporal cycle-
consistency learning. In IEEE/CVF CVPR, pages 1801–1810,
2019. 1, 6, 7

[7] Ehsan Elhamifar and Dat Huynh. Self-supervised multi-task
procedure learning from instructional videos. In ECCV, pages
557–573. Springer, 2020. 7

[8] Ehsan Elhamifar and Zwe Naing. Unsupervised procedure
learning via joint dynamic summarization. In Proceedings of
the IEEE/CVF ICCV, pages 6341–6350, 2019. 6, 7

[9] Sanjay Haresh, Sateesh Kumar, Huseyin Coskun, Shahram N
Syed, Andrey Konin, Zeeshan Zia, and Quoc-Huy Tran.
Learning by aligning videos in time. In IEEE/CVF CVPR,
pages 5548–5558, 2021. 1, 3, 6, 7

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[11] Youngkyoon Jang, Brian Sullivan, Casimir Ludwig, Iain
Gilchrist, Dima Damen, and Walterio Mayol-Cuevas. Epic-
tent: An egocentric video dataset for camping tent assembly.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019. 6

[12] Vishal Kaushal, Rishabh Iyer, Khoshrav Doctor, Anurag Sa-
hoo, Pratik Dubal, Suraj Kothawade, Rohan Mahadev, Kunal
Dargan, and Ganesh Ramakrishnan. Demystifying multi-
faceted video summarization: Tradeoff between diversity, rep-
resentation, coverage and importance. In 2019 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
pages 452–461. IEEE, 2019. 4

[13] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen Gall.
Unsupervised learning of action classes with continuous tem-
poral embedding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12066–12074, 2019. 7

[14] Yin Li, Miao Liu, and James M Rehg. In the eye of beholder:
Joint learning of gaze and actions in first person video. In
Proceedings of the European conference on computer vision
(ECCV), pages 619–635, 2018. 6

[15] Weizhe Liu, Bugra Tekin, Huseyin Coskun, Vibhav Vineet,
Pascal Fua, and Marc Pollefeys. Learning to align sequential
actions in the wild. IEEE/CVF CVPR, 2022. 1, 6, 7

[16] Francesco Ragusa, Antonino Furnari, Salvatore Livatino, and
Giovanni Maria Farinella. The meccano dataset: Understand-
ing human-object interactions from egocentric videos in an
industrial-like domain. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
1569–1578, 2021. 6

[17] M. Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen.
Efficient parameter-free clustering using first neighbor rela-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8934–8943,
2019. 4, 5

[18] Yair Shemer, Daniel Rotman, and Nahum Shimkin. Ils-summ:
Iterated local search for unsupervised video summarization.
In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 1259–1266. IEEE, 2021. 3

[19] Yuhan Shen, Lu Wang, and Ehsan Elhamifar. Learning to
segment actions from visual and language instructions via
differentiable weak sequence alignment. In IEEE/CVF CVPR,
2021. 7

[20] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 1

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[22] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin,
Xiaoou Tang, and Luc Van Gool. Temporal segment networks
for action recognition in videos. IEEE transactions on pattern
analysis and machine intelligence, 41(11):2740–2755, 2018.
3

[23] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis.
From actemes to action: A strongly-supervised representation

for detailed action understanding. In Proceedings of the IEEE
international conference on computer vision, pages 2248–
2255, 2013. 6

[24] Dimitri Zhukov, Jean-Baptiste Alayrac, Ivan Laptev, and Josef
Sivic. Learning actionness via long-range temporal order
verification. In ECCV, pages 470–487. Springer, 2020. 6

	. Feature extractor:
	. Details
	. Additional Results

	. Bootstrapping
	. Alternate variants

	. Temporal Encoder
	. Model details
	. Analysis : Positional Encoding

	. Temporal Sampling augmentation
	. Sampling approach
	. Effect of temporal extent

	. Miscellaneous Analyses
	. How long to train?
	. Effect of inter-video alignment
	. TC3I with multiple modalities
	. Additional results on loss ablation

	. Key Step extraction
	. Using alternate sampling approach for key step extraction
	. Alternative KSE metrics
	. Additional KS visualizations

	. Practicality of the approach
	. Use of multiple modalities during training
	. Additional details:
	. Dataset details
	Egocentric procedure learning datasets
	Third-person procedure learning datasets
	Other datasets

	. More information on KSL baselines
	. Evaluation protocols
	. Metric details
	. Hyperparameter details

	. Overall flow
	. Limitations and Future work
	. Negative Societal Impact

