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Abstract

This supplement includes a more general proof that the
set of PSFs described by a single phase mask is non-convex.
It also includes an extended discussion of the benefits a
single-shot time-averaged systems has over a multi-shot
burst imaging system.

1. Generalized Proof of PSF Non-convexity

This proof, similar to the one included in the main paper,
will simplify the convexity of the PSF set to the convexity of
cross-correlation. We generalize the result for any aperture
by showing there always exists a shift such that the overlap
of any set of points and their shifts is a single element.

Definition 1. Let D = {v ∈ R2 : ∥v∥ = 1} be the set of all
unit vector directions.

Definition 2. Let setmax and setmin be defined by,

setmax(S, v) = {x ∈ S : x · v = max
x∈S

x · v} (1)

setmin(S, v) = {x ∈ S : x · v = min
x∈S

x · v}. (2)

setmax produces the set of all points in S that are furthest
in direction v, and setmin similarly produces the set of all
points that are furthest in the opposite direction of v.

Lemma 1. For all finite non-empty sets of points S, there
exists some shift δ such that card(S ∩ (S + δ)) = 1 where
S+δ = {x+δ : x ∈ S}, and card(·) denotes the cardinally
of a set. That is, there exists some shift such that S and S
shifted overlap at exactly one point.

Proof. Consider the set of all directions without a unique
maximizer,

V = {v ∈ D : card(setmax(S, v)) > 1}. (3)

Notice that for all v ∈ V , we can treat v as a normal vector
to the line formed by points in setmax(S, v) (Figure 1). V
is the set of normal vectors whose corresponding line inter-
sects multiple points of S. We can upper bound card(V) as
the number of unique lines that intersect two points in S.

card(V) ≤ card({−→xy : x, y ∈ S}) < ∞ (4)

Therefore, V is a finite set (whereas D, the set of all unit
vectors, is clearly an infinite set). Then, there always ex-
ists some u such that u ∈ D and u ̸∈ V . Because u ̸∈ V ,
card(setmax(S, u)) = 1, the direction u has a unique max-
imizer. Let m be the single element of setmax(S, u), and
choose δ ∈ (m− setmin(S, u)). δ is the difference between
u’s unique maximizer and one of u’s minimizers. Observe
that setmax(S, u) and setmin(S, u) define the extents of S
in the direction u (Figure 2). Therefore, when applying the
shift δ, only the furthest point in S in direction u and −u
will overlap (Figure 3). Let T include all points from S ex-
cept m. Then, T and T +δ are disjoint by definition. There-
fore, S ∩ (S + δ) = {m}, which is a single element.

The following is similar to the proof included in the main
paper; however, we relax the condition on A to be any arbi-
trary aperture. Therefore, this proof of PSF non-convexity
produces a more general result.

Definition 3. Let TA(N) be the set of N ×N matrices in
TN×N with non-zero support A, i.e. the matrix is supported
only where A = 1, where T is the complex unit circle.
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Figure 1: Example of vectors in V . Observe that each vector
v1, v2, v3 is perpendicular to a side.

Figure 2: Example of S and a valid direction u. Observe
that there is only one point furthest in direction u, but can
be multiple points furthest in the opposite direction −u.

The PSF induced by a phase mask M can be modeled as
the squared magnitude of the Fourier transform of the pupil
function f [2].

Definition 4. Let f : RN×N → TA(N) be defined by

f(M) = A⊙ exp(iD + icM) (5)

where ⊙ denotes entry-wise multiplication, D ∈ RN×N

and c ∈ R−{0} (the reals except for 0) are fixed constants,
and A ∈ {0, 1}N×N is the aperture.

Figure 3: Example of overlap between S and S + δ.

Definition 5. Let g : TA(N) → RN×N be defined by

g(X) =
|F(X)| ⊙ |F(X)|

∥F(X)∥2F
(6)

where F denotes the discrete Fourier Transform with suffi-
cient zero-padding, | · | denotes entry-wise absolute value,
and ∥ · ∥F denotes the Frobenius norm.

Lemma 2. From fourier optics theory [1], any single phase
mask’s PSF at a specific depth can be written as

PSF = g ◦ f.

Theorem 3. The range of PSF is not a convex set.

Proof. f is clearly surjective, so it suffices to argue the
range of g is not convex. Assume by way of contra-
diction that the range of g is convex. Then, for all
X(1), . . . , X(k) ∈ TA(N) there exists Y ∈ TA(N) such
that g(Y ) = 1

k

∑k
i=1 g(X

(i)). By Parseval’s Theorem,

∥F(X)∥2F = N2∥X∥2F = N2
N∑
i=0

N∑
j=0

Ai,j (7)

so the condition is

|F(Y )| ⊙ |F(Y )| = 1

k

k∑
i=1

|F(X(i))| ⊙ |F(X(i))| (8)

or equivalently

F(Y )⊙F(Y ) =
1

k

k∑
i=1

F(X(i))⊙F(X(i)). (9)

Then the cross-correlation theorem reduces it to

F(Y ⋆ Y ) =
1

k

k∑
i=1

F(X(i) ⋆ X(i)) (10)
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where ⋆ denotes cross-correlation. Because the Fourier
Transform is linear we finally have

Y ⋆ Y =
1

k

k∑
i=1

X(i) ⋆ X(i). (11)

Therefore, the convexity of the range of g is equivalent to
the convexity of the set {X ⋆ X : X ∈ TA(N)}. We will
show the set’s projection onto a particular coordinate is not
convex.

(X ⋆X)s,r =

N∑
i=0

N∑
j=0

Xi,jXi+s,j+r (12)

where we adopt the convention that Xs,r = 0 when s, r >
N or s, r < 0. Observe that cross-correlation can be rep-
resented geometrically as shifting X over X . Let S be the
set of coordinates with non-zero entries in X . Applying
Lemma 1 to S shows that X and X will overlap at exactly
one point. Select points v, u ∈ S such that v− u = δ, then,

(X ⋆X)δ = XuXv +

N2−1∑
i=1

0. (13)

Because XuXv ∈ T, (X ⋆X)δ ∈ T which is a non-convex
set. Therefore, the set of correlation’s of values on the com-
plex unit circle masked by A is also not convex. Conse-
quently, the range of PSF is not a convex set.

2. Discussion: Time Averaging Compared to
Multi-Shot Sequences

Our optical model images a static scene through multi-
ple phase masks which we switch between over the course
of single exposure (Figure 4a). A natural question, then, is
why limit ourselves to a single exposure. Why not capture
a burst of images, each with a different phase mask (Fig-
ure 4b)?

While it is true that superimposing the outputs of multi-
ple PSFs creates challenges in disambiguating outputs from
phase masks, it also offers several benefits. First, because
we only capture a single frame, our system uses less mem-
ory due to less I/O required. Second, imaging in a single
exposure is more light efficient. Over a fixed time interval,
a single exposure allows you to capture the entirety of the
light from the scene. Multi-shot, alternatively, would miss
photons during readout between shots.
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(a) Time averaging phase masks

(b) Multi-shot phase masks

Figure 4: Time averaging and multi-shot optical systems.
Observe that multi-shot systems capture multiple coded im-
ages, while time averaging only captures one. This means
our system is more light and memory efficient.
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