
Supplement Material

Abdelrahman Shaker1∗ Muhammad Maaz1 Hanoona Rasheed1 Salman Khan1

Ming-Hsuan Yang2,3,4 Fahad Shahbaz Khan1,5

1Mohamed bin Zayed University of AI 2University of California, Merced
3Yonsei University 4Google Research 5Linköping University

We provide additional details regarding:

• Architecture Details of SwiftFormer (Appendix 1)
• Implementation Details (Appendix 2)
• Additional Ablations (Appendix 3)
• Error Analysis on COCO Dataset (Appendix 4)
• Qualitative Results (Appendix 5)
• Discussion (Appendix 6)

1. Architecture Details of SwiftFormer
The detailed network architectures for SwiftFormer-XS,
SwiftFormer-S, SwiftFormer-L1, and SwiftFormer-L3 are
provided in Table 1. We report the resolution, the number
of channels (C) and the number of repeated blocks (N ) of
each stage for all the model variants. For all variants, we
use an expansion ratio of 4 in the Conv. Encoder. Since
our architectures are not built using any neural architecture
search, the number of channels and blocks for our models
are selected to have a similar model size and GMACs with
previous state-of-the-art methods in each variant.

2. Additional Implementation Details
We train and report the accuracy of our SwiftFormer mod-
els at 224×224 resolution for a fair comparison with the
baseline and previous methods. We use a batch size of 2048
during training. The experiments for the SwiftFormer mod-
els were conducted on eight A100 GPUs, with an average
training time of 36 hours for the classification. To enhance
the robustness of the models, we apply several data aug-
mentations during training. Specifically, we employ color
jitter with a ratio of 0.4, RandAugment [1] with a magni-
tude of 9 and standard deviation of 0.5, gradient clipping
of 0.01, Mixup [6] and Cutmix [5] with percentages of 1
and 0.8, respectively, label smoothing with a value of 0.1,
and random erase with a probability of 0.25. Similar to Effi-
cientFormer [2], we employ RegNetY-16GF [4] with 82.9%
top-1 accuracy as our teacher model for hard distillation.
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3. Additional Ablations
In Table 2, we ablate the effect of the proposed SwiftFormer
encoder at each stage gradually. We note that our Swift-
Former encoder can be incorporated in all stages without
sacrificing the latency. In addition, it achieves consistent
improvement in terms of top-1 accuracy across the stages.
Furthermore, we investigate the effect of QKV interactions
and observe that eliminating key-value interactions and re-
placing them with a simple linear transformation results in
a 10% reduction in latency. In addition to latency reduction,
the top-1 accuracy is improved by 0.4%.

4. Error Analysis on COCO Dataset

Figure 1: Error analysis for the performance on
COCO. The baseline EfficientFormer-L1 (left) and our
SwiftFormer-L1 (right) across all categories, on the all-
objects (top) and large-sized objects (bottom). The plot in
each image indicates a series of precision-recall curves us-
ing different evaluation configurations [3], with the legend
indicating the area under each curve in brackets.

Fig. 1 shows the error analysis plot of the baseline
EfficientFormer-L1 (left) and our SwiftFormer-L1 (right)
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Parameters 3.5M 6.1M 12.1M 28.5M

Table 1: SwiftFormer Architectures. Description of the configurations of the model variants with respect to the output res-
olution, the output channels C, the number of blocks N , and the model’s GMACs and parameters. Between two consecutive
stages, we incorporate a downsampling layer to increase the number of channels and reduce the resolution by two.

for all-objects and the large-sized objects. We show the area
under each curve in brackets in the legend. It is noted
that our results are better compared to the baseline, espe-
cially for large-sized objects. For instance, the overall AP
of large-sized objects of EfficientFormer-L1 at IoU=0.75 is
0.558 and perfect localization increases the AP to 0.793.
Excluding the background false positives likely increase the
performance to 0.928 AP. In the case of SwiftFormer, the
overall AP at IoU=0.75 is 0.610 and perfect localization in-

creases the AP to 0.837. Further, excluding the background
false positives likely increase the performance to 0.946 AP.

5. Qualitative Results

Fig. 2 and Fig. 3 show additional qualitative results of our
SwiftFormer model for instance segmention/detection and
semantic segmentation respectively. Our model accurately
localizes and segments the objects in diverse scenes.

Figure 2: Additional qualitative results on COCO. Detection and instance segmentation results of our model.



Figure 3: Additional qualitative results on ADE20K. Top row shows the ground truth masks and bottom row shows the
predictions of our model.

Model configuration Params GMACs Latency (ms) Top-1 (%)

Conv=[4, 3, 10, 5], SwiftFormer=[0, 0, 0, 0] 10.9 1.4 0.9 79.9
Conv=[4, 3, 10, 4], SwiftFormer=[0, 0, 0, 1] 11.8 1.5 1.0 80.4
Conv=[4, 3, 9, 4], SwiftFormer=[0, 0, 1, 1] 12.0 1.5 1.0 80.7
Conv=[4, 2, 9, 4], SwiftFormer=[0, 1, 1, 1] 12.0 1.6 1.1 80.8
Conv=[3, 2, 9, 4], SwiftFormer=[1, 1, 1, 1] 12.1 1.6 1.1 80.9

Table 2: Ablation on our SwiftFormer-L1 architecture.
Using one SwiftFormer encoder as the last block in all
stages provides an optimal trade-off on the ImageNet-1k
dataset. Latency is measured on iPhone14 Neural Engine.

6. Discussion

The positional encoding and attention biases in vision trans-
formers both play a crucial role in providing spatial infor-
mation about the input sequence, particularly in dense pre-
diction tasks. However, the attention bias is sensitive to
input resolution and can make the model fragile when in-
corporated into these tasks. Meanwhile, typical positional
encoding can slow down the inference of the model on
resource-constrained devices. We introduce an efficient ad-
ditive attention mechanism that does not include positional
encoding or attention biases, allowing for fast inference
speed. To the best of our knowledge, SwiftFormer is the
most efficient hybrid architecture for mobile applications.
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