
A. Preliminary: Diffusion Model
Following the notation of [16, 8, 1], we provide a de-

tailed review of the diffusion models, which consist of a
diffusion process and a reverse process.

Diffusion process. The diffusion process q generates
corrupted samples y1, y2, ..., yT by adding different levels
of Gaussian noise to the original signal y0 at each timestep
t ∈ [0, T ], which can be formulated as

q(y1:T |y0) :=

T∏
t=1

q(yt|yt−1)

q(yt|yt−1) := N (yt;
√

1− βtyt−1, βtI)

(1)

where βt is the noise variance schedule [16] and I denotes
the identity matrix. Following Ho et al. [8], we can rewrite
Eq. 1 in a form that requires no iteration to yield yt from
y0:

q(yt|y0) := N (yt;
√
ᾱty0, (1− ᾱt)I)

:=
√
ᾱty0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I)

(2)

where ᾱt :=
∏t

s=0 αs and αt := 1−βt. ϵ denotes the Gaus-
sian noise. With a sufficiently large T and reasonable noise
schedule βt, the distribution of q(yT ) is nearly an isotropic
Gaussian distribution N (0, I).

Reverse process. There are two ways to implement the
reverse process p using a neural network parameterized by
θ. One is by iterating pθ(yt−1|yt) multiple times until y0,
and the other is by getting y0 in one step directly from
pθ(y0|yt).

In the first case, it is found that the posterior
q(yt−1|yt,y0) can be formulated as a Gaussian distribution
as well using the Bayes’ theorem:

q(yt−1|yt,y0) = N (yt−1; µ̃(yt,y0), β̃tI) (3)

where

β̃t :=
1− ᾱt−1

1− ᾱt
βt

µ̃t(yt,y0) :=

√
ᾱt−1βt

1− ᾱt
y0 +

√
αt(1− ᾱt−1)

1− ᾱt
yt

(4)

are the variance and mean of the Gaussian distribution, re-
spectively. However, Eq. 3 depends on y0 to measure the
posterior, which is unknown in advance. Instead, we ap-
proximate q(yt−1|yt,y0) through

pθ(yt−1|yt) := N (yt−1;µθ(yt, t),Σθ(yt, t)) (5)

where

Σθ(yt, t) = β̃tI

µθ(yt, t) =
1

√
αt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t)

) (6)

where ϵθ(yt, t) is the noise predicted by the neural network,
which is supervised by

L = Eyt,t,ϵ[||ϵθ(yt, t)− ϵ||2] (7)

where ϵ ∼ N (0, I).
In the second case, we can directly predict the clean data

from a learned network fθ(yt, t), which is supervised by

L = Eyt,t[||fθ(yt, t)− y0||2] (8)

The difference between the above two cases lies in the
prediction target of the network, which in the first case is
the noise ϵ at each timestep, and in the second case is the
original signal y0. We choose to predict y0 in this work.

B. Preliminary: Projective Geometry

We refer to the process of a real-world object being pho-
tographed by a camera as the first projection. The obtained
image is passed through the 3D pose estimator to predict
multiple plausible 3D hypotheses. These hypotheses are
projected a second time to the camera plane by JPMA,
which is called reprojection. We introduce the reprojection
function P(·) in JPMA under two camera models: pinhole
camera and distorted pinhole camera.

Pinhole camera. We denote the 3D coordinate of a human
joint in the camera coordinate system as (X,Y, Z), and its
reprojection to the camera plane as a 2D coordinate (u, v).
Then, the reprojection under a pinhole camera (with 4 in-
trinsic camera parameters) can be formulated by a perspec-
tive transformation:

X ′ = X/Z, Y ′ = Y/Z

u = fx ·X ′ + cx

v = fy · Y ′ + cy

(9)

where fx, fy are the focal lengths expressed in pixel units
and (cx, cy) is the principal point that is usually at the image
center.

Distorted pinhole camera. Real lenses will bring dis-
tortion to the ideal pinhole camera model, resulting in a
distorted pinhole camera (with 9 intrinsic camera param-
eters). The distortion can be categorized into two types: 1)
radial distortion, which is caused by flawed radial curva-
ture of a lens and can be approximated by three parame-
ters k1, k2, k3; 2) tangential distortion, which arises mainly
from the tilt of a lens with respect to the image sensor array
and can be approximated by two parameters p1, p2. When
these two types of distortion are applied, Eq. 9 is extended



as:

X ′ = X/Z, Y ′ = Y/Z

Xd = X ′ · (dr + dt) + p1r
2

Yd = Y ′ · (dr + dt) + p2r
2

u = fx ·Xd + cx

v = fy · Yd + cy

(10)

where dr = 1 + k1r
2 + k2r

4 + k3r
6, r =

√
X ′2 + Y ′2 and

dt = 2p1X
′2 + 2p2Y

′2, following the formulation in [4].

For calibrated cameras, we use the ground truth intrin-
sic camera parameters for JPMA. Otherwise, we use a net-
work to estimate the parameters, which is discussed in Sec-
tion D.2.

C. Algorithm

Algorithm 1 provides the pseudo-code of D3DP training
procedure. First, we scale the ground truth 3D pose y0 to
control the signal-to-noise ratio. Then, a diffusion process
is constructed from the scaled signal to the noisy 3D pose.
Next, we train a denoiser to reverse this process by using
the noisy 3D pose, 2D keypoints, and the timestep to predict
the clean 3D pose ỹ0. The entire framework is supervised
by an MSE loss: L = ||y0 − ỹ0||2. By using this sim-
ple optimization objective, we avoid issues of sensitivity to
hyperparameters (e.g., balance factor between different loss
functions) and training instability encountered in previous
methods [24, 13].

Algorithm 2 provides the pseudo-code of D3DP infer-
ence procedure. We start by sampling H initial 3D poses
from a Gaussian distribution and use the number of iter-
ations K to determine the timestep for each iteration. In
each iteration, noisy 3D poses are sent into the denoiser to
estimate the uncontaminated 3D poses, which are used by
DDIM to derive noisy inputs for the denoiser in the next
iteration.

In addition, we combine D3DP with a common data aug-
mentation scheme (i.e., horizontal flipping) in deterministic
3D pose estimation [30, 19, 28, 18], and propose diffusion-
flipping. Specifically, we horizontally flip input 2D key-
points as well as noisy 3D poses. The denoiser is then em-
ployed to produce the flipped predictions, which are flipped
back and averaged with the original predictions to obtain
the final 3D poses. The above steps are repeated in each
iteration. Compared with previous approaches, the pro-
posed method extends the data augmentation from once to
K times, which reduces the cumulative error and increases
the accuracy of predictions.

Algorithm 1 D3DP Training

def training_loss(2dp, 3dp_gt, T):
# 2dp: [B, N, J, 2], 3dp_gt: [B, N, J, 3]
# T: maximum number of timesteps
# B: batch size, N: frame count, J: joint count

# Signal scaling
3dp_gt = 3dp_gt * scale

# Corrupt 3dp_gt
t = randint(0, T) # timestep
noise = normal(mean=0, std=1) # noise: [B, N, J, 3]
alpha_cp = alpha_cumprod(t)
3dp_crpt = sqrt( alpha_cp) * 3dp_gt +

sqrt(1 - alpha_cp) * noise

# Denoise using a 3d pose estimator as backbone
3dp_pred = denoiser(3dp_crpt, 2dp, t)

# Set regression loss
loss = MSE(3dp_pred, 3dp_gt)

return loss

alpha cumprod(t): cumulative product of αi, i.e.,
∏t

i=1 αi

Algorithm 2 D3DP Inference

def inference(2dp, T, K, H):
# 2dp: [B, N, J, 2], T: maximum number of timesteps
# K, H: number of iterations and hypotheses

# Initialize noisy 3d poses: [B, H, N, J, 3]
3dp_t = normal(mean=0, std=1)

# Sample timesteps uniformly
times = reversed(linespace(0, T, K + 1))

# [(T*(1-k/K), T*(1-(k+1)/K))], k = 0,...,K-1
time_pairs = list(zip(times[:-1], times[1:])

for t_now, t_next in zip(time_pairs):
# Predict 3dp_0 from 3dp_t
3dp_0 = denoiser(3dp_t, 2dp, t_now)

# Diffusion flipping
# Data augmentation using horizontal flipping
if augment:
2dp_hf = horiz_flipping(2dp)
3dp_t_hf = horiz_flipping(3dp_t)
3dp_0_hf = denoiser(3dp_t_hf, 2dp_hf, t_now)
3dp_0 = (3dp_0 + horiz_flipping(3dp_0_hf)) / 2

# Estimate 3dp_t at t_next
3dp_t = ddim_step(3dp_t, 3dp_0, t_now, t_next)

return 3dp_0

linespace: generate evenly spaced values

D. Additional Ablation Study

D.1. Components of D3DP

We conduct more ablation experiments on Human3.6M
to study the design of D3DP in detail.

Regression target. We implement two alternatives: pre-
dicting the noise ϵt at each timestep of the reverse process
or predicting the original 3D data y0. As shown in Table 1a,
the latter achieves better results.

Note that the difference between our work and other
concurrent diffusion-based methods [9, 7, 5] mainly lies in
the regression target. The regression target of our model



Target MPJPE↓
noise 40.2

original data 40.0

(a) Regression target.

Location MPJPE↓
none 40.8

first layer 40.0
all layers 40.0

(b) Location of the added
timestep embedding.

Type MPJPE↓
none 40.6

flipping-once 40.3
diffusion-flipping 40.0

(c) Data augmentation.

Type Method MPJPE↓
IF concat 40.0
EF concat 40.9
EF add 41.2
EF CA 41.1

(d) 2D conditioning. IF: input
fusion. EF: embedding fusion.
CA: cross attention.

T MPJPE↓
100 40.8
500 40.2
1000 40.0
2000 40.3

(e) Maximum num-
ber of timesteps.

Table 1: Ablation experiments of D3DP on Human3.6M to justify the selection of each component. H=1, K=1. Default
settings are shown in gray .

Iteration 1 2 3 4 5
noise ϵt 48.6 43.5 41.0 40.5 40.0

original data y0 39.9 39.9 39.8 39.8 39.7

Table 2: Performance of two regression targets after each
iteration. MPJPE↓ is reported. H=K=5. J-Agg is used.

is the original 3D data y0, while theirs is the noise ϵt at
each timestep. Table 1a shows our method outperforms
theirs. Further experiments (Table 2) reveal that predicting
y0 yields good performance even in early iterations, while
predicting ϵt does not. This is because in early iterations,
when the input yt is extremely noisy, it is more effective
to predict the original signal y0 directly than to obtain y0

by predicting the noise ϵt and then subtracting it from yt.
This property is valuable for real-time processing. For ex-
ample, when K is fixed and computational resources are
inadequate, the algorithm is required to produce predictions
after the first iteration. Our method of predicting y0 still
achieves satisfactory results, while theirs of predicting ϵt
does not.

Location of the timestep embedding. We add the timestep
embedding to the network in a similar way as the positional
embedding [22]. Table 1b shows that adding it to the first
layer of the network performs the same as all layers, hence
the former is chosen for simplicity. Experimental results
demonstrate that timestep embedding is crucial to the de-
noising process.

Data augmentation. Three data augmentation approaches
are compared in Table 1c, including 1) no augmentation; 2)
flipping-once, which flips the input, conducts denoising for
K times, and flips the prediction again. The flipped pre-
diction is then averaged with the unflipped prediction in
the original branch to yield the final output; 3) diffusion-
flipping, which applies the flip-denoise-flip process to each
timestep (K times). The detailed architectures of these
three approaches are shown in Fig. 1. Our diffusion-flipping
achieves the best results because it averages the 3D poses of
the original and flipped branches at each timestep, prevent-
ing the accumulation of errors. Other concurrent diffusion-
based methods [9, 7, 5] don’t use any augmentation or use
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Figure 1: Detailed architectures of three data augmentation
approaches.

the flipping-once method. Therefore, our model is more ef-
fective than theirs.

2D conditioning. As shown in Table 1d, we evaluate mul-
tiple fusion methods (concatenation, addition, and cross at-
tention [22]) in two fusion types (input fusion and embed-
ding fusion). For embedding fusion, two additional spatio-
temporal Transformer layers are used to extract 2D features,
after which these features are fused into the denoiser. The
best fusion approach is concatenating noisy 3D poses and
2D conditions on the input side, which provides a fast and
effective way to modify existing 3D pose estimators to fit
the diffusion framework.

Maximum number of timesteps. Table 1e indicates that
the best performance can be achieved by setting an appro-
priate maximum number of timesteps. When T is too small,
we cannot diffuse the ground truth 3D poses to a Gaussian
distribution during training, so the denoiser has trouble re-
covering a clean pose from Gaussian noise during inference.
When T is too large, excessive samples become pure noise
after diffusion. Then, the training process of the denoiser
is affected and the denoiser cannot generalize well to 3D
poses with varying levels of noise (i.e., 3D poses at differ-
ent timesteps) during inference.

Compatibility. The denoiser has the compatibility to use
existing 3D human pose estimators as the backbone. We



Backbone P-STMO [19] PoseFormer [30] STE [14] TCN [18]
w/o diffusion 43.7 47.6 44.6 46.4
w/ diffusion 42.2 45.7 43.8 44.5

Table 3: Performance using other 3D estimators as back-
bone. MPJPE↓ is reported. H=K=1.

Camera Model Access MPJPE↓
w/ distortion GT 39.74

w/o distortion GT 39.80
w/ distortion estimated 39.78

w/o distortion estimated 39.82

Table 4: Impact of different camera models and different
ways of accessing intrinsic camera parameters. H=5, K=5.
GT: ground truth. J-Agg setting is used.

run our pipeline on a few other 3D estimators [19, 30, 14,
18]. Table 3 shows that our approach achieves performance
gains over different backbone networks, which verifies the
compatibility and versatility.

D.2. Intrinsic Camera Parameters in JPMA

As shown in Table 4, we investigate the effect of two
factors on the performance of JPMA: 1) the camera model,
including pinhole camera (w/o distortion) or distorted pin-
hole camera (w/ distortion); 2) the way of accessing the in-
trinsic camera parameters, including using the ground truth
(GT) or using a 2-layer MLPs to estimate the parameters
(estimated). When the ground truth intrinsic camera param-
eters are used, the ideal pinhole camera model without dis-
tortion shows a performance degradation of 0.06mm com-
pared with the case with distortion. When a neural network
is utilized to estimate the parameters (the ground truth is
not available), the performance drops by only 0.04mm and
0.02mm in distorted and distortion-free cases, respectively.
These results indicate that the proposed JPMA method is
robust to the noise caused by incorrect camera models or
inaccurate estimations of intrinsic camera parameters.

D.3. Variance of Hypotheses

Fig. 2 shows how the performance of the best, worst, and
average hypotheses changes with the number of hypotheses
H . As H increases, the performance of the average hy-
pothesis remains essentially unchanged, with the worst hy-
pothesis getting worse and the best hypothesis getting bet-
ter. This result validates the statement in the main paper
that the mean of all hypotheses remains roughly the same
(the error stays around 39.9mm), while the variance rises.

E. Additional Quantitative Results
Table 5 provides quantitative comparisons between our

D3DP with JPMA and the state-of-the-art approaches on
Human3.6M when P-MPJPE is reported using 2D key-
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Figure 2: Effect of different numbers of hypotheses H on
the performance of the best, worst, and average hypotheses.
K=10.

points obtained from 2D detectors as inputs. Table 6
shows the results when MPJPE is reported using ground
truth 2D keypoints as inputs. Without bells and whistles,
D3DP transforms an existing deterministic 3D pose estima-
tor into a probabilistic version with simple modifications
and achieves considerable performance gains. Our method
produces favorable results under conventional pose-level
settings (P-Agg and P-Best), and the performance is further
enhanced under the proposed joint-level settings (J-Agg and
J-Best), which demonstrates the effectiveness of disentan-
gling the hypothesis at the joint level. Experimental results
show that the proposed method surpasses the others by a
wide margin.

F. Additional Qualitative Results
F.1. Different Numbers of Hypotheses and

Iterations

We show the qualitative results under different numbers
of hypotheses H and iterations K in Fig. 3. When H in-
creases (first row), the mean of hypotheses is basically un-
changed while the variance increases, which is consistent
with the conclusion in Section D.3. When K increases (sec-
ond row), the variance also raises gradually, meaning that
the diversity of hypotheses is improved. This is because
DDIM re-adds different noise to the predicted 3D poses to
generate inputs for the next iteration, resulting in a progres-
sive increase in the gap between different hypotheses as K
grows. When the variance is small, the 2D reprojections
of all hypotheses are close to each other, which may affect
the performance of JPMA (middle left: the solid red line is
not better than the green one in the left foot region). When
H,K are fixed (third row), we show the results of the 3D
hypotheses estimated in each iteration. As k increases, the
diversity of hypotheses is improved and the advantage of
JPMA over average becomes apparent.

F.2. In-the-Wild Videos

We train our method on Human3.6M dataset and eval-
uate on in-the-wild videos from 3DPW [23], Penn Ac-



Deterministic Methods
P-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

TCN [18] (N=243)* CVPR’19 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
RIE [20] (N=243)* MM’21 32.5 36.2 33.2 35.3 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 34.8 24.2 25.8 35.0

Anatomy [2] (N=243)* TCSVT’21 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0
PoseFormer [30] (N=81)* ICCV’21 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 36.0 34.6
U-CDGCN [10] (N=96)* MM’21 29.8 34.4 31.9 31.5 35.1 40.0 30.3 30.8 42.6 49.0 35.9 31.8 35.0 25.7 23.6 33.8

STE [14] (N=351)* TMM’22 32.7 35.5 32.5 35.4 35.9 41.6 33.0 31.9 45.1 50.1 36.3 33.5 35.1 23.9 25.0 35.2
P-STMO [19] (N=243)* ECCV’22 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
MixSTE [28] (N=243)* CVPR’22 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
MixSTE [28] (N=243)*‡ CVPR’22 30.8 32.7 30.6 31.9 33.1 38.6 30.8 30.4 42.4 46.4 34.2 30.7 32.3 21.8 22.6 32.6

DUE [27] (N=300)* MM’22 30.3 34.6 29.6 31.7 31.6 38.9 31.8 31.9 39.2 42.8 32.1 32.6 31.4 25.1 23.8 32.5
D3DP (N=243, H=1, K=1)* 30.6 32.5 29.1 31.0 31.9 37.6 30.3 29.4 40.6 43.6 33.3 30.5 31.4 21.5 22.4 31.7

Probabilistic Methods
P-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

CVAE [21] (N=1, H=200, P-Agg) ICCV’19 35.3 35.9 45.8 42.0 40.9 52.6 36.9 35.8 43.5 51.9 44.3 38.8 45.5 29.4 34.3 40.9
GAN [13] (N=1, H=10, P-Agg) BMVC’20 42.1 44.7 45.4 51.0 49.3 51.5 41.2 46.2 57.5 70.8 48.7 44.1 50.8 42.1 43.7 48.7

GraphMDN [17] (N=1, H=5, P-Agg) IJCNN’21 39.7 43.4 44.0 46.2 48.8 54.5 39.4 41.1 55.0 69.0 48.0 43.7 49.6 38.4 42.4 46.9
NF [24] (N=1, H=1, P-Agg) ICCV’21 37.8 41.7 42.1 41.8 46.5 50.2 38.0 39.2 51.7 61.8 45.4 42.6 45.7 33.7 38.5 43.8

MHFormer [15] (N=351, H=3, P-Agg)* CVPR’22 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4
D3DP (N=243, H=1, K=1, P-Agg)* 30.6 32.5 29.1 31.0 31.9 37.6 30.3 29.4 40.6 43.6 33.3 30.5 31.4 21.5 22.4 31.7

D3DP (N=243, H=20, K=10, P-Agg)* 30.6 32.5 29.1 30.9 31.9 37.5 30.2 29.4 40.6 43.4 33.3 30.4 31.4 21.5 22.4 31.7
D3DP (N=243, H=20, K=10, J-Agg)* 30.6 32.4 29.2 30.9 31.9 37.4 30.2 29.3 40.4 43.2 33.2 30.4 31.3 21.5 22.3 31.6

MDN [12] (N=1, H=5, P-Best♯) CVPR’19 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6
CVAE [21] (N=1, H=200, P-Best♯) ICCV’19 27.6 27.5 34.9 32.3 33.3 42.7 28.7 28.0 36.1 42.7 36.0 30.7 37.6 24.3 27.1 32.7
GAN [13] (N=1, H=10, P-Best♯) BMVC’20 38.5 41.7 39.6 45.2 45.8 46.5 37.8 42.7 52.4 62.9 45.3 40.9 45.3 38.6 38.4 44.3

GraphMDN [17] (N=1, H=200, P-Best♯) IJCNN’21 30.8 34.7 33.6 34.2 39.6 42.2 31.0 31.9 42.9 53.5 38.1 34.1 38.0 29.6 31.1 36.3
NF [24] (N=1, H=200, P-Best♯) ICCV’21 27.9 31.4 29.7 30.2 34.9 37.1 27.3 28.2 39.0 46.1 34.2 32.3 33.6 26.1 27.5 32.4

D3DP (N=243, H=1, K=1, P-Best♯)* 30.6 32.5 29.1 31.0 31.9 37.6 30.3 29.4 40.6 43.6 33.3 30.5 31.4 21.5 22.4 31.7
D3DP (N=243, H=20, K=10, P-Best♯)* 30.2 32.1 28.8 30.4 31.5 37.0 29.8 28.9 39.9 42.4 32.8 30.0 30.9 21.3 22.1 31.2
D3DP (N=243, H=20, K=10, J-Best♯)* 27.5 29.4 26.6 27.7 29.2 34.3 27.5 26.2 37.3 39.0 30.3 27.7 28.2 19.6 20.3 28.7

Table 5: Results on Human3.6M in millimeters under P-MPJPE. N,H,K: the number of input frames, hypotheses, and
iterations of the proposed D3DP. (‡) - Our implementation. (♯) - Not feasible in real-world applications. (*) - Use CPN [3]
as the 2D keypoint detector to generate the inputs. Red: Best. Blue: Second best. Gray : our method.

Deterministic Methods
MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

TCN [18] (N=243) CVPR’19 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
SRNet [25] (N=243) ECCV’20 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0

Anatomy [2] (N=243) TCSVT’21 - - - - - - - - - - - - - - - 32.3
PoseFormer [30] (N=81) ICCV’21 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3

RIE [20] (N=243) MM’21 29.5 30.8 28.8 29.1 30.7 35.2 31.7 27.8 34.5 36.0 30.3 29.4 28.9 24.1 24.7 30.1
Ray3D [26] (N=9) CVPR’22 31.2 35.7 34.6 33.6 35.0 37.5 37.2 30.9 42.5 41.3 34.6 36.5 32.0 29.7 28.9 34.4

P-STMO [19] (N=243) ECCV’22 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3
STE [14] (N=351) TMM’22 27.1 29.4 26.5 27.1 28.6 33.0 30.7 26.8 38.2 34.7 29.1 29.8 26.8 19.1 19.8 28.5
DUE [27] (N=300) MM’22 22.1 23.1 20.1 22.7 21.3 24.1 23.6 21.6 26.3 24.8 21.7 21.4 21.8 16.7 18.7 22.0

MixSTE [28] (N=243) CVPR’22 21.6 22.0 20.4 21.0 20.8 26.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.6
MixSTE [28] (N=243)‡ CVPR’22 22.9 21.7 21.0 21.4 20.8 23.5 24.1 21.8 25.3 23.5 21.4 20.1 19.5 15.3 16.6 21.3

D3DP (N=243, H=1, K=1) 19.9 19.6 19.7 19.3 20.2 22.7 21.5 19.2 25.5 24.0 20.1 18.9 19.0 14.0 14.5 19.9

Probabilistic Methods
MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

GraphMDN [17] (N=1, H=5, P-Agg) IJCNN’21 33.9 39.9 33.0 35.4 36.8 44.4 38.9 33.0 41.0 50.0 36.4 38.3 37.8 28.2 31.5 37.2
MHFormer [15](N=351, H=3, P-Agg) CVPR’22 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.3 31.0 29.4 22.2 23.0 30.5

D3DP (N=243, H=1, K=1, P-Agg) 19.9 19.6 19.7 19.3 20.2 22.7 21.5 19.2 25.5 24.0 20.1 18.9 19.0 14.0 14.5 19.9
D3DP (N=243, H=20, K=10, P-Agg) 19.9 19.5 19.6 19.2 20.1 22.4 21.5 19.1 25.4 23.7 20.0 18.9 18.8 14.0 14.5 19.8
D3DP (N=243, H=20, K=10, J-Agg) 19.9 19.4 19.4 19.0 19.8 22.0 21.4 19.1 24.8 23.2 19.6 18.7 18.6 14.0 14.5 19.6

GAN [13] (N=1, H=10, P-Best♯) BMVC’20 54.8 61.9 48.6 63.6 55.8 73.7 59.0 61.3 62.2 85.7 52.8 60.2 57.5 51.3 56.8 60.0
GraphMDN [17] (N=1, H=5, P-Best♯) IJCNN’21 28.9 34.5 28.2 30.2 31.5 38.5 32.3 28.6 35.7 43.3 31.9 32.1 33.3 25.2 27.8 31.8
D3DP (N=243, H=1, K=1, P-Best♯) 19.9 19.6 19.7 19.3 20.2 22.7 21.5 19.2 25.5 24.0 20.1 18.9 19.0 14.0 14.5 19.9

D3DP (N=243, H=20, K=10, P-Best♯) 19.7 19.3 19.2 18.8 19.6 21.9 21.2 18.6 24.7 23.0 19.4 18.4 18.4 13.9 14.4 19.4
D3DP (N=243, H=20, K=10, J-Best♯) 18.7 18.2 18.4 17.8 18.6 20.9 20.2 17.7 23.8 21.8 18.5 17.4 17.4 13.1 13.6 18.4

Table 6: Results on Human3.6M in millimeters under MPJPE. N,H,K: the number of input frames, hypotheses, and
iterations of the proposed D3DP. (‡) - Our implementation. (♯) - Not feasible in real-world applications. The ground truth 2D
keypoints are used as inputs. Red: Best. Blue: Second best. Gray : our method.



H=5,K=5,k=4 H=10,K=5,k=4 H=20,K=5,k=4

H=10,K=2,k=1 H=10,K=5,k=4 H=10,K=10,k=9

H=10,K=10,k=0 H=10,K=10,k=5 H=10,K=10,k=9

Figure 3: Qualitative results under different numbers of hypotheses H and iterations K. Top: H varies, when K=5. The
results are the outputs of the last iteration, i.e., k=4 for all three subfigures. Middle: K varies, when H=10. The results are
the outputs of the last iteration, i.e., k=1, 4, 9 for three subfigures respectively. Bottom: H=10, K=10. The results are the
outputs of the first, intermediate, and last iterations, i.e., k=0, 5, 9 for three subfigures respectively. Dashed line: predicted
3D pose hypotheses. Each color represents an individual hypothesis. Solid blue line: ground truth 3D poses. Solid red line:
the final prediction obtained by using JPMA as the aggregation method. Solid green line: the final prediction obtained by
using average as the aggregation method.

tion [29], JHMDB [11], and youtube. We use AlphaPose [6]
as the 2D keypoint detector to generate 2D poses. As shown
in Fig. 4, our method achieves satisfactory performance in
most of the frames. For the cases of severe occlusion (3rd

row), fast motion (5th row), low illumination (7th row), and
rare poses (8th row), the proposed method generates highly
uncertain predictions to represent the possible locations of
3D poses. Besides, our method can also generalize to ani-
mations (8th row) and monkey poses (9th row) because 2D
keypoints are used as inputs, excluding the interference of
complex textures. Theoretically, our method can be applied
to any type of humanoid 3D pose estimation.

F.3. Analysis of Failure Cases

Our method may fail under the previously mentioned
cases such as severe occlusions, fast motion, rare poses,
etc. The 3rd row of Fig. 4 shows a person walking through
the woods. Most of her body is occluded and our approach
cannot obtain a very accurate result in this case. Besides,
the person in the 6th row of Fig. 4 raises his hand above
his head, a movement that is rare in the training set. Our
method fails to generalize to this pose and therefore pro-
duces incorrect predictions.



Figure 4: Qualitative results of the proposed method on in-the-wild videos. Dashed line: predicted 3D pose hypotheses. Each
color represents an individual hypothesis. H=5, K=5
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