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This document provides more details of our approach
and additional experimental results, as shown below:

• Details of Implementation and Architecture of ASL
• Additional Quantitative Results on ActivityNet1.3
• Additional Ablative Results
• Additional Qualitative Results

1. Details of Implementation and Architecture
The overall architecture is detailed in Table a. For each

dataset, the training and architecture details are of little dif-
ference.

Respectively, for Multithumos [14], we use RGB-only
I3D [3] pretrained on Kinetics to extract the video features.
We upsample the input features to a fixed length of 1024
using linear interpolation and train the model with a batch
size of 2, a learning rate of 0.0002, an epoch of 60 and a
wight decay of 0.05.

For Charades [11], we use RGB-only I3D [3] model to
extract the video features. We upsample the input features
to a fixed length of 512 and train the model with a batch
size of 32, a learning rate of 0.0004, an epoch of 15 and a
weight decay of 0.05.

For Ego4D-Moment Queries v1.0 [7], we use
EgoVLP [9], Slowfast [5] and Omnivore [6] network
to extract the video features. We upsample the input
features to a fixed length of 1024 and train the model with
a batch size of 2, a learning rate of 0.0001, an epoch of 10
and a weight decay of 0.05. l1= 2, l2=3. l3 equals 8. The
number of heads and embedding dimension demb are 8 and
512.

For Epic Kitchens 100 [4], we use Slowfast [5] features.
We upsample the input features to a fixed length of 1024
and train the model with a batch size of 2, a learning rate
of 0.0001, and a weight decay of 0.05 on noun and verb
sub-task for 20 and 15 epochs respectively.

For Thumos14 [12], we use two-stream I3D [3] pre-
trained on Kinetics to extract the video features. We extend
the input length to 1024 and train the model with a batch
size of 2, a learning rate of 0.0001, an epoch of 30 and a
weight decay of 0.05.

For ActivityNet1.3 [2], we use two-stream I3D [3] pre-
trained on Kinetics to extract the video features. We down-
sample the input features to a fixed length of 192 and train
the model with a batch size of 16, a learning rate of 0.001,
an epoch of 13 and a weight decay of 0.01. The number of
heads and embedding dimension demb are 4 and 256.

For most datasets (if no additional noting), l1=1, l2 ==
2. l3 equals 5, l4 equals 2, the number of heads and embed-
ding dimension demb are 8 and 512. For all datasets, we use
AdamW optimizer with a linear warmup and a cosine learn-
ing rate decay strategy. We present the pseudo-code of Ac-
tion Sensitivity Learning (ASL) as shown in Algorithm 1.

Algorithm 1 The pseudo-code of ASL
Arguments:The labeled dataset H = {V }, ground-truth
instance G = {t̄s, t̄e, c̄}, Transformer Encoder E , class-
level action sensitivity pcls, ploc instance-level evaluator
Φcls,Φloc,localization head Dloc, classification head Dcls.

1: initialize hcls, hloc, E ,Φcls,Φloc,Dloc,Dcls

2: for i ∈ [1, 2, · · · , N ] do:
3: Sample batch B ∈ H
4: L ← 0
5: for V in B do:
6: f ← E(V )
7: fgt ← Sampling(f, (t̄s, t̄e))
8: qcls ← Φcls(fgt)
9: qloc ← Φloc(fgt)

10: hcls ← pcls1[c̄] + qcls

11: hloc ← ploc1[c̄] + qloc

12: L ← L+ hlocLloc

13: L ← L+ hclsLcls

14: L ← L+Ls ▷ Defined in Eq.7.
15: L ← L+ LASCL ▷ Defined in Eq.14.
16: Calculate ∂L
17: Update hcls, hloc, E ,Φcls,Φloc,Dloc,Dcls

18: return hcls, hloc, E ,Φcls,Φloc,Dloc,Dcls



Table a. The architecture of our model. conv denotes 1-D convolution layers, where k is the kernel size, s is the stride, ci, co is the
input and outputfeatures dimensions. For Transformer-based parts, DS denotes Downsampling, self attn and channel attn is the normal
self-attention operation on the temporal dimension and proposed channel attention operation on the channel dimension. GT from DS
Transformeri denotes using ground-truth segments to sample features from outputs of DS Transformeri. TGT is the length of ground-truth
segments. FC denotes fully connected layers.

Name Layer Input Output Size
Input clip - - T×D

encoder

Projection conv k=3, s=1(ci=D, co=demb) input clip T ×demb

TCN enc l1×[conv k=3, s=1(ci=demb, co=demb)] Projection T ×demb

Transformer enc l2× [[self attn + channel attn], [feedforward network]] TCN enc T ×demb

DS Transformeri,
(i=1, 2, · · · , l3)

l3× [[self attn], [feedforward network]] DS Transformeri−1
T

2i−1 × demb

Instance-level
evaluator

Inst. evaluator
l4× [conv k=3, s=1(ci=demb, co=demb)] GT from DS Transformeri

TGT × demb

FC (ci=512, co=1) TGT × 1

heads Cls or Loc heads
conv k=3, s=1(ci=demb, co=512)

DS Transformeri

T
2i−1 × demb

conv k=3, s=1(ci=512, co= 512) T
2i−1 × demb

conv k=3, s=1(ci=512, co=1 or 2) T
2i−1 × 1 or T

2i−1 × 2

Table b. Additional Results on ActivityNet1.3. We report mAP
at different tIoU thresholds. Average mAP in [0.5:0.05:0.95] is
reported on ActivityNet1.3. Best results are in bold.

Model Feature
ActivityNet1.3

0.5 0.75 0.95 Avg.
AFSD [8] I3D [3] 52.4 35.3 6.5 34.4
TadTR [10] I3D [3] 49.1 32.6 8.5 32.3
Actionformer [15] I3D [3] 54.2 36.9 7.6 36.0
Actionformer [15] TSP [1, 13] 54.7 37.8 8.4 36.6
ASL I3D [3] 54.1 37.4 8.0 36.2
ASL TSP [1, 13] 54.9 37.8 8.6 36.7

Table c. Additional Ablations on Thumos14. Class. and Inst.
means using class-level and instance-level action sensitivity learn-
ing.

method avg mAP
baseline 66.08
baseline + Inst. 66.96
baseline + Class. 67.12
baseline + ASL 67.74
baseline + ASL + ASCL 67.88

2. Additional Quantitative Results on Activi-
tyNet1.3

[15] shows that using TSP features [1, 13] will benefit the
performance on ActivityNet1.3 [2] more. We here report
additional quantitative results on ActivityNet1.3 using TSP
features. As shown in Table b, ASL also outperforms pre-
vious state-of-the-art methods using no matter I3D or TSP
features, demonstrating the advantages of our approach.

3. Additional Ablative Results
This section provides additional ablative results on Thu-

mos14 [12]. As shown in c, baseline denotes our base
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Figure a. Visualization of (Top) the frame sensitivity to sub-tasks
of Action: fill a container with water and (bottom) Action: re-
move food from the oven. Please zoom in for the best view.

model without action sensitivity learning, our proposed ac-
tion sensitivity learning and contrastive loss both boosts the
performance of average mAP.

4. Addition Qualitative Results
In this section, we provide more qualitative results for

action sensitivity learning. As shown in a, we provide qual-
itative results of action: fill a container with water and re-



move food from the oven. Frames involving main compo-
nents of action (i.e. water and pot, food) are of a relatively
high action sensitivity while those ambiguous and transi-
tional frames are of a lower action sensitivity for both clas-
sification and localization sub-task. Meanwhile, sensitive
frames may vary depending on the specific sub-tasks, in line
with our decoupled design.

References
[1] Humam Alwassel, Silvio Giancola, and Bernard Ghanem.

Tsp: Temporally-sensitive pretraining of video encoders for
localization tasks. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) Workshops,
2021. 2

[2] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the ieee conference on computer vision and pattern
recognition, pages 961–970, 2015. 1, 2

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 1, 2

[4] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
and Michael Wray. Scaling egocentric vision: The epic-
kitchens dataset. In European Conference on Computer Vi-
sion (ECCV), 2018. 1

[5] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019. 1

[6] Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der
Maaten, Armand Joulin, and Ishan Misra. Omnivore: A Sin-
gle Model for Many Visual Modalities. In CVPR, 2022. 1

[7] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson
Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:
Around the world in 3,000 hours of egocentric video. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18995–19012, 2022. 1

[8] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-
wei Fu. Learning salient boundary feature for anchor-
free temporal action localization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3320–3329, June 2021. 2

[9] Kevin Qinghong Lin, Alex Jinpeng Wang, Mattia Sol-
dan, Michael Wray, Rui Yan, Eric Zhongcong Xu, Difei
Gao, Rongcheng Tu, Wenzhe Zhao, Weijie Kong, et al.
Egocentric video-language pretraining. arXiv preprint
arXiv:2206.01670, 2022. 1

[10] Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei
Zhang, Song Bai, and Xiang Bai. End-to-end temporal ac-
tion detection with transformer. IEEE Transactions on Image
Processing, 31:5427–5441, 2022. 2

[11] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11–
14, 2016, Proceedings, Part I 14, pages 510–526. Springer,
2016. 1

[12] Yu-Gang Jiang&Jingen Liu&A Roshan Zamir&George
Toderici&Ivan Laptev&Mubarak Shah& Rahul Sukthankar.
Thumos challenge: Action recognition with a large number
of classes. 2014. 1, 2

[13] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6450–6459, 2017. 2

[14] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-
driluka, Greg Mori, and Li Fei-Fei. Every moment counts:
Dense detailed labeling of actions in complex videos. Inter-
national Journal of Computer Vision, 126:375–389, 2018. 1

[15] Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer:
Localizing moments of actions with transformers. In Eu-
ropean Conference on Computer Vision, volume 13664 of
LNCS, pages 492–510, 2022. 2


