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A. Conditional Denoising Diffusion Model
In this section, we will give more details about Condi-

tional Denoising Diffusion Model. Given a damaged mural
image xd and heatmap xa, we want to learn a parametric
approximation to p(x|xd,xa) through a stochastic iterative
process. In other words, p(x|xd,xa) indicates a mapping
from damaged image xd to restored image x.

Forward process. Let q(xt|xt−1) be the distribution
of intermediate process in the forward chain. We define
the forward diffusion process (x0, . . . ,xt, . . . ,xT ) as iter-
atively adds Gaussian noise to the image via a fixed Markov
chain (as shown in Fig. 6). Then, we give the definition of
forward process:

xt = αtxt−1 +
√
βtϵt

= αt(αt−1xt−2 +
√
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βtϵt

= αtαt−1xt−2 +
√
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√
βtϵt

= αtαt−1xt−2 +
√
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= . . .
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√
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t ϵ,

(7)

Following the result in [22], if T is large enough, the re-
verse process pθ(xt−1|xt,x

d,xa) has the same distribution
of forward process q(xt|xt−1). Then, we give the definition
of the forward process:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

q(xt|xt−1) = N (xt|
√
αtxt−1, (1− αt)I)

q(xt|x0) = N (xt|
√
γtx0, (1− γt)I),

(8)

where the diffusion parameter 0 < αt < 1, αt =
√
1− βt ,

ϵ ∼ N (0, I) and γt = ᾱt =
∏t

i=1 αi. By rearranging the
terms, we have:

q(xt−1|x0,xt) = N (xt−1|µt, σ
2
t I)
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√
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1− γt
x0 +

√
αt(1− γt−1)

1− γt
xt

σ2
t =

(1− γt−1)(1− αt)

1− γt

(9)

Optimizing the Denoising Model. Benefiting from the
additivity of Gaussian distribution, given step t, we can es-

timate the noisy target image xt:

xt =
√
γtx0 +

√
1− γtϵ, ϵ ∼ N (0, I). (10)

The goal of CDDPM is to recover the target image x0.
Let fθ(xd,xa,xt, γt) be denoising model. Following [43],
the objective function is minimizing the error between ϵ and
model output:

E(xd,xa,xt)Eϵ,γt

∥∥fθ(xd,xa,xt, γt)− ϵ
∥∥2
2
. (11)

Reverse process. Furthermore, for reverse process of
CDDPM, starting from Gasuusian nois xT , we have:

pθ(x0:T |xd,xa) = p(xT )

T∏
t=1

pθ(xt−1|xt,x
d,xa)

p(xT ) = N (xT |0, I)
pθ(xt−1|xt,x

d,xa) = N (xt−1|µθ(x
d,xa,xt, γt), σ

2
t I).

Reverse step pθ(xt−1|xt,x
d,xa) aims to denoise the

noisy image xt for given damaged image xd and heatmap
xa. According to the above reverse process, given xt, we
can calculate the approximated x̂0 by:

x̂0 =
1
√
γ
t

(
xt −

√
1− γtfθ(xd,xa,xt, γt)

)
, (12)

where fθ(xd,xa,xt, γt) is used to estimate ϵ at iteration
t. Then, we can estimate the mean of pθ(xt−1|xt,x

d,xa):

µθ(x
d,xt, γt) =

1
√
αt

(
xt −

1− αt√
1− γt

fθ(x
d,xa,xt, γt)

)
.

(13)
Following the formulation of [22], we can estimate the

mean of pθ(xt−1|xt,x
d,xa):

µθ(x
d,xt, γt) =

1
√
αt

(
xt −

1− αt√
1− γt

fθ(x
d,xa,xt, γt)

)
.

(14)
Then we can use the above approximation to estimate the

xt−1:

xt−1 ←
1
√
αt

(
xt −

1− αt√
1− γt

fθ(x
d,xa,xt, γt)

)
+
√
1− αtϵt,

(15)

where ϵ ∼ N (0, I).
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Figure 11: An overview of parameters of subsets.

B. Dataset Details
B.1. Subset Details

By controlling different parameters of degradation, we
roughly construct three subsets of data with different de-
grees of damage, including Light, Medium and Terrible
Damage Subset.

• Light Damage Subset. The first dataset we built
prefers to damage mural images with unstructured
degradation. We take color degradation and scratches
as the main damage methods and use a small amount
of grunge to block the texture of the mural. For struc-
tured degradation, we take a little wearing defect to the
edge of the plane model. The light damage dataset’s
defect is simple but harder than the degradation in the
old photo.

• Medium Damage Subset. The second dataset we built
considers both structured and unstructured degrada-
tion. The amount of color degradation, scratch, and
grunge will be taken randomly within a high interval.
Meanwhile, structured degradation like cracking and
peeling are added and set at a low value. Compared
to the light damage subset, this subset contains more
missing parts that need to be repainted.

• Terrible Damage Subset. The third dataset we built
contains amounts of all types of structured and un-
structured degradation. Benefiting from blender’s

powerful texture engine, defects and image contents
were perfectly blended together. Cracking, peeling,
wearing, and breaking will cause extensive irregular
holes. Unlike the previous two subsets, this subset is
more closely related to the real-world damaged mural.

The control parameters of three subset (Light, Medium,
Terrible) are shown in Fig. 11. We present the effects of
each parameter in the framework for generating damage
mural (Fig. 16, Fig. 17, Fig. 18). All control parameters
are divided into three categories: Unstructured Degradation,
Structured Degradation and Other Defects Parameters.

• Unstructured Degradation. This set of parameters
control some unstructured degradation. The amount
parameters, e.g., Scratch Amount, Blunt Amount and
Grunge Amount control the number of areas for degra-
dation (row 1-3 in Fig. 16, higher value stands for
more severe). The scale parameters, e.g., Global Map
Scale, Scratch Map Scale, Grunge Map Scale and
Blunt Map Scale control the scale of degradation (row
4-7).

• Structured Degradation. This set of parameters con-
trol some structured degradation. The amount parame-
ters, e.g., Creaking Amount, Pealing Amount, Wearing
Amount and Breaking Amount control the damage ex-
tent of 3d model (row 1-4 in Fig. 17). Global Removal
defects will randomly delete pieces from mural plane
(fifth row). Wall Wearing and Wall Cracking can dam-
age the base wall model (row 6-7).



Figure 12: The effect of Light base parameter on real-
world mural restoration. The left image is a real-world
damaged mural and the right is the restoration result.

• Other Defects Parameters. This set of parameters
controls some dirt texture. Roughness describes the
variety of dirt texture (first row in Fig. 18). Dirt
Amount controls the number of areas for dirt (second
row). Color Contrast controls the contrast between dirt
and wall (third row). Center/Sides describe the amount
of dirt in top/sides of the base wall model and mural
plane (row 4-5). Dirt Texture can change the color and
shape of dirt (sixth row). Bump Strength controls the
depth of dirt (last row).

We set parameters in Fig. 11 as mean value (e.g.,
Scratch Amount:0.5). Given a restored image, all control
parameters are randomly tuned with a uniform distribution
U (mean-0.15, mean+0.15).

We compared the generated mural with the actually dam-
aged mural. As shown in Fig. 15, we have implemented
most of the damaging effects. For unstructured defects,
scratch and blunt results are satisfactory. Especially for
the color degradation, almost the same as the actual dam-
aged mural effect. However, blunt defects are hard to sim-
ulate the real damage. For structured defects, our proposed
framework perfectly mimics the physical damage of a real
mural. Influenced by wearing and breaking effects, the gen-
erated mural image contains many missing areas.

Nonetheless, our generated damaged mural image still
has a gap from the actually damaged mural. Some defects
such as bacteria, wind erosion, and water stains are still
difficult to simulate in the existing framework. Moreover,
some dirt defects still need to design carefully to achieve a
more realistic effect. Hence, in future work, we will pay
more attention to improving the reality of generated images
to reduce the gap between synthesis and reality.

B.2. Hyper-parameter Experiments

For the construction of synthetic datasets, a critical thing
is how the proposed simulation with these adjustable affects
the final restoration. It’s important to choose the correct
degradation hyper-parameters to build datasets for better
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Figure 13: The effect of differently unstructured degrada-
tion hyper-parameters on real-world mural restoration.
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Figure 14: The effect of differently structured degradation
hyper-parameters on real-world mural restoration.

real-world mural restoration performance. In this subsec-
tion, we conduct some experiments to explore the parame-
ters of the optimal defect. Following Fig. 11, we set Light
as the base degradation hyper-parameter. We constructed
different datasets by offsetting the mean values of each of
the eight underlying parameters (e.g., color + 0.1 means
adding 0.1 from the mean value of all color-related param-
eters in Light). We train the ADF model on these datasets
and evaluate the performance on real-world dataset.
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Figure 15: The comparison between the generated damage and the real damage image.

For comparison, we give the real-world results obtained
after restoration training of the dataset generated by the
Light base parameter (shown in Fig. 12). Since the light pa-
rameters in each degradation are not high, it does not match
the real-world situation of mural damage, we can find that
the model does not generate satisfactory results. Then we
tune all types of decay parameters. The experiment result is
shown in Fig. 13 and Fig. 14. We can make the following
remarks:

(1) for unstructured degradation in Fig. 13, as the degra-
dation parameter increases, we find that color decay and
grunge can significantly improve the color correction and
sharpness of the results, respectively. When the weight of
color decay and grunge in the training image increases, the
model can obtain better robustness and thus generate stable
and high-quality restoration results. Hence, we infer that
color decay and grunge parameters are important to restora-
tion.

(2) for structured degradation in Fig. 14, when cracking

and peeling parameters is small, the model can not process
the terrible damage region in the mural image. However, as
the parameter values grow, the quality of the generated im-
ages rapidly improves. As the weight of structured degrada-
tion parameters rises in the training images, the model can
better learn how to locate broken areas for repair. This is
the reason why the overall result becomes better when the
structured degradation parameters are raised. Hence, higher
cracking and peeling can help models significantly improve
their ability to repaint patterns.

(3) for scratch, blunt, breaking, and wearing, these
degradation can help the model focus on processing noisy
detail which is more suitable for the restoration of the com-
plex damaged murals. Therefore, setting these parameters
at a medium value can effectively improve the detail of the
restoration results (e.g., cloth texture, hair, and color) in
most situations. In real-world mural restoration tasks, these
parameters can be specifically set to bring the training im-
ages closer to reality by analyzing them according to the



analysis of mural damage.

C. Experiment Details
C.1. Competitors.

We compare ADF with recent SOTA methods, including
Old Photo Restoration [46], DDRM [27], SwinIR [32] and
Real-ESRGAN [43].

• Old Photo Restoration [46] is a method that restores
old photos that suffer from multiple types of degrada-
tions through training variational autoencoders;

• DDRM [27] proposes a practical framework to com-
plete conditional image-to-image task, e.g., image
restoration, haze and noise removal;

• SwinIR [32] is a strong baseline model which aims to
restore high-quality images from damaged images;

• Real-ESRGAN [43] introduce a blind super-
resolution framework to remove unknown and com-
plex degradations based on a generative adversarial
network.

• Restormer [58] presents an efficient method that can
capture long-range pixel interactions for large image
restoration task.

• All-In-One [29] presents an all-in-one method that
could recover images from a variety of unknown cor-
ruption types and levels.

C.2. Experiment Setup

In this subsection, we add some details about the ex-
periment. In ablation studies about backbone, we train
and evaluate the both types of origin model on our dataset.
The CGAN model is trained on the same environment with
all other baselines (software and hardware). We train the
CGAN generator and discriminator 50000 iterations with a
batch size of 64 (8 per GPU). For other hyper parameters,
we following the origin paper [37].

C.3. Additional Experiment.

The qualitative results of mural-restoration experiments
are shown in Fig. 19, Fig. 20 and Fig. 21. From the results
of the figure, we can conclude the following remarks: Our
algorithm generated a continuous stroke in the heavily dam-
aged area and naturally connected it to the other less dam-
aged content (e.g., first and third row in Fig. 19). However,
in some special cases, compared with the manually restored
murals, the content generated by our method is only style
matched, not semantic matched (e.g., eighth row). Since
the input image is only a small part of the overall mural, it is
difficult for even humans to understand the semantics of the

contents in the image. In some damaged images with rel-
atively complete semantic information (e.g., the last row),
our algorithm can accurately fill in the missing content in
terms of style and semantics.

(2) In some damaged images with relatively complete
semantic information (e.g., the last row in Fig. 20), our al-
gorithm can accurately fill in the missing content in terms
of pixels and semantics. However, in the same situation,
some of the generated areas still have some distorted or clut-
tered content (e.g., second and fourth row). This demon-
strates that the location of the damaged area and the degree
to which it is critical to the overall semantic information
will affect the final repair result.

(3) The guided diffusion model (e.g., the last column in
Fig. 21) prefers to restore the missing content with black
pixels. This situation means that the model only learns how
to automatically locate the damaged areas, but not how to
fill in the missing areas based on the surrounding content
(e.g., first and second row). Moreover, in some cases, the
tone of the restored images is far from the ground truth (e.g.,
fifth and sixth row). This demonstrates that the model mis-
interpreted the correct pixel in the damaged image as the
noise pixel. Hence, comparing our algorithm with original
guided diffusion model, it is clear that our proposed com-
ponents can address these problems.



Scratch 
Amount

Grunge
Amount

Blunt
Amount

Scratch 
Map Scale

Grunge 
Map Scale

Blunt 
Map Scale

Global 
Map Scale

Parameter 0.00 0.20 0.40 0.60 0.80 1.00
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Figure 19: The qualitative results of mural-restoration experiments.
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Figure 20: The qualitative results of mural-restoration experiments.
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Figure 21: The qualitative results of mural-restoration experiments.


