
[Supplementary] LNPL-MIL: Learning from Noisy Pseudo Labels for
Promoting Multiple Instance Learning in Whole Slide Image

1. Ablation Study

Effects of SP-LNPL for MIL Methods MIL methods
results are summarized in Tab. 1. The SP-LNPL method
can improve the performance of several representative MIL
methods on two typical weakly supervised tasks. Besides,
we have the following observation: 1) In the Camelyon16-
based Tumor Diagnosis, the correspondence between WSI-
level labels and patches is relatively direct, so reducing false
positives by SP-LNPL in Top-K key instances can signifi-
cantly improve the performance. 2) In the CRC-based Sur-
vival Prediction, the bag-level labels and the semantical in-
formation of a single instance are completely unaligned. In
contrast, bag-level labels aligned with ROI regions such as
the tumor microenvironment. The instances obtained by
Top-K selection without SP-LNPL have many false posi-
tives and may be more spatially discrete, resulting in sub-
optimal results. In the more difficult Survival Prediction,
SP-LNPL still has an improvement on the MIL methods. In
the future, we will continue to explore the SP-LNPL consid-
ering the cross-domain problem in data cleaning and spatial
information in Top-K key instances selection.

Effects of Super Patch Size in SP-LNPL. Ablation re-
sults are summarized in Tab. 2. We have following obser-
vation: 1) In the Camelyon16 dataset, different-sized su-
per patches have a promotion for the Tumor Diagnosis. At
the same time, we find that a smaller or larger super patch
will affect the data-cleaning ability of SP-LNPL. Since the
Camelyon16 dataset has a smaller tumor area, a larger super
patch will lead to the erroneous deletion of some true posi-
tive areas. Besides, the smaller super patch cannot provide
enough true negative instances in a super patch, resulting in
a weaker classification of false positives. 2) In the Survival
Prediction of CRC-Surv, bag-level prediction performance
is related to the selection accuracy and spatial correlation
of Top-K key instances. Selecting a moderate-sized super
patch like 50 can achieve a better balance between the two
factors and thus reach better results.

Effects of Labeled Data at Different Proportions. Ab-
lation results of Top-K key instances selection and λ in In-

stance Distribution Aware Task (IDA-Task) are summarized
in Tab. 3 and Tab. 4, respectively. We have the following
observations: 1) A larger Top-K will inevitably introduce
more noise in the Top-K key instances selection. However,
limited by the low confidence of weak classifiers, a rela-
tively large Top-K can minimize the loss of key instances.
Therefore, for the number of Top-K instances selection, we
make a tradeoff that chooses 400 at 0.1%/0.5% Labeled and
200 for Top-K at 1% Labeled. 2) Similarly, the confidence
of positive distribution labels in IDA-Task is determined by
the performance of weak classifiers. λ determines the reg-
ularization of instance-level supervision for bag-level train-
ing. We choose a smaller 0.001 at 0.1%/0.5% Labeled and
a larger 0.01 at 1% Labeled. Besides, since Camelyon16 is
a relatively simple WSI-level binary classification problem,
weak regularization can already achieve satisfactory results,
so we also choose 0.001 at 0.5% Labeled.

2. Visualization Analysis
As shown in Fig. 1, we visualize the prediction results

on TCGA-COAD [5], where the weak classifier is trained
on the NCT-CRC-HE dataset [3]. Constrained by the LPA
and the cross-domain problem, as shown in Fig. 1b, the ROI
regions predicted by the weak classifier have great devia-
tions. As shown in Fig. 1c, SP-LNPL can alleviate the large
number of noisy pseudo-labels to a certain extent. Besides,
affected by weak classifiers’ extremely low prediction con-
fidence, SP-LNPL, as a data cleaning method, still has lim-
itations.

As shown in Fig. 2 and Fig. 3, we visualize the super
patch and false positive patches selected by SP-LNPL in
Camelyon16 [1] and CRC-Surv, respectively. From Fig. 2a
and Fig. 3a, we find that most of the patches in the super
patch have great similarity in morphology, indicating that
we can effectively cluster the patches in WSI according to
the high-dimensional features of the patch. Furthermore,
we analyze the false positive patches selected by SP-LNPL
in Fig. 2b and Fig. 3b. Due to the weak generalization of
weak classifiers, some similar or blurry corrupted images
will be mislabeled as positive labels with high confidence,
resulting in false positives during the Top-K key instances
selection. Specifically, in Fig. 2b, some similar lymphatic
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Architecture
Tumor Diagnosis Survival Prediction

0% 0.5% 0.5% (*) 1% 1% (*) 0% 0.1% 0.1% (*) 1% 1% (*)

AB-MIL 0.840.024 0.877.030 0.932.005 0.873.006 0.854.044 0.582.069 0.601†.057 0.601†.057 0.592.068 0.604†.074
DS-MIL 0.743.066 0.821.058 0.900.009 0.792.039 0.810.018 0.564.068 0.552.060 0.544.055 0.540.076 0.579.074

Patch-GCN 0.925.020 0.944.005 0.968.012 0.957.003 0.969.009 0.580.024 0.578.022 0.590†.030 0.598.042 0.582.041
LNL-MIL / 0.902.040 0.971.011 0.944.007 0.986.007 / 0.625†

.040 0.627†
.043 0.606†

.085 0.621†
.074

Table 1. Verify the Effects of SP-LNPL Method for MIL Tasks. We select four representative MIL algorithms: bypass attention based
AB-MIL [7], non-local attention based DS-MIL [4], GNN based Patch-GCN [2], and Transformer based LNL-MIL (Ours). 0.1%/0.5%,
1%. Weak classifier is trained based on LPA, and used to select Top-K key instances. 0.1%(*)/0.5%(*), 1%(*). Based on the weak
classifier, SP-LNPL is adopted. Then, we select Top-K key instances.

Tumor Diagnosis Survival Prediction
Super patch 0.5% 1% 0.1% 1%

w/o 0.902.040 0.944.007 0.625†.040 0.606†.085
25 0.924.047 0.948.019 0.628†

.045 0.603†.072
50 0.971.011 0.986.007 0.627†.039 0.621†

.074

100 0.942.010 0.958.014 0.596†.039 0.605†.064

Table 2. Effects of the Super Patch Size in SP-LNPL. We test the
effect of different sized super patches in SP-LNPL on the Tumor
Diagnosis and Survival Prediction.

Tumor Diagnosis Survival Prediction
Top-K 0.5% 1% 0.1% 1%

100 0.968.005 0.965.008 0.571.022 0.602†.056
200 0.969.006 0.986.007 0.603†.057 0.621†

.074

400 0.971.011 0.906.136 0.627†
.043 0.612†.041

Table 3. Effects of Different Top-K Key Instances Selection.
The confidence of the pseudo-labels predicted by the weak clas-
sifier under different proportions of labeled data is distinct. We
explore the impact of Top-K selection on two downstream tasks
under different proportions of labeled data.

Tumor Diagnosis Survival Prediction
λ 0.5% 1% 0.1% 1%

w/o 0.964.006 0.983.008 0.603†.027 0.614†.074
0.001 0.971.011 0.986.007 0.627†

.043 0.616.077
0.010 0.942.026 0.982.009 0.627†

.039 0.621†
.074

Table 4. Effects of λ in IDA-Task. We discuss the selection of λ
parameters under different proportions of labeled data.

regions, blurred damaged images, debris regions, etc., will
have errors. In Fig. 3b, some similar smooth muscle tissue
and cluttered debris areas will have errors.
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(a) TCGA-AD-6890. (b) Weak classifier. (c) Ours, tROI = 0.5.

Figure 1. The Visualization of Weak Classifier Predictions
(CRC). (a). Dark red represents the pathologist-annotated tumor
area. We adopt the TCGA cancer coarse annotation from Loeffler
et al. [6] (b). Dark red represents the tumor region predicted by
the weak classifier after only FSL. (c). Dark red represents the
tumor region predicted by the weak classifier after FSL and data
cleaning by the SP-LNPL.
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(a) Visualization of the patches in a super patch. (b) Visualization of false positive patches in Top-K key instances.

Figure 2. The Visualization of Super Patch and False Positive Patches in Top-K Key Instances (Camelyon16). (a). We visualize the
super patch obtained by the KNN search method in the feature space. (b). We analyze the false positive pseudo-labels of weak classifiers,
and visualize the false positive patches in Top-K key instances.

(a) Visualization of the patches in a super patch. (b) Visualization of false positive patches in Top-K key instances.

Figure 3. The Visualization of Super Patch and False Positive Patches in Top-K Key Instances (CRC). (a). We visualize the super
patch obtained by the KNN search method in the feature space. (b). We analyze the false positive pseudo-labels of weak classifiers, and
visualize the false positive patches in Top-K key instances.
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