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1. Evaluation Metrics

Similar to [3, 2, 1], we adopt the standard evaluation met-
rics in our experiments, which are described in detail as fol-
lows:

» Square Root of the Scale Invariant Logarithmic Error
(SILog):
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where T stands for the set of pixels with valid values
and g = logD — log DY*;

¢ Relative Absolute Error (Abs Rel):
ﬁ 2 .peT ‘D - Dgt|/Dgt§

* Relative Squared Error (Sq Rel, Eigen Split):
%ZDGT (D - Dgt)Z/Dgt§

* Relative Squared Error (Sq Rel, Official Split):
i Eper (D - D*)*/D7,

¢ Root Mean Squared Error (RMSE):
\/|1T|ZDET (D - Dgt)2;

* Root Mean Squared Logarithmic Error (RMSE log):
Vi Eper (logD — log D)%,

¢ Inverse Root Mean Squared Error iRMSE):
\/ﬁZDeT (1/D - 1/Dgt)2;

* logyp:
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 Threshold Accuracy (§ < thr):

D Dgt) =< thr) for

% of D satisfies (max (W’ =

thr = 1.25,1.252,1.253.

2. More Qualitative Depth and Point Cloud Re-
sults

To perform more comparisons against previous state-of-
the-art competitors, we display qualitative depth results of
NewCRFs [3] and our method on the official split of KITTI
dataset, as shown in Figure 1. As can be seen, the proposed
method delinates more accurate depth estimates, especially
in difficult regions, for example windows in the fourth col-
umn. For better evaluation of depth estimates from the 3D
shape, we convert depth maps into point clouds and show
more qualitative point cloud results on the KITTI dataset
and NYU-Depth-v2 in Figure 2 and Figure 3, respectively.
It can be seen that the proposed method preserves prominent
geometric features, for example, roads in outdoor scenario
and floors in indoor scenario, and is capable of recovering
the 3D world reasonably.
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Figure 1. Qualitative depth results on the official split of KITTI dataset. The white boxes highlight the regions to emphasize. The
second and third rows are depth maps. The fourth and fifth rows are error maps.
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Figure 2. Qualitative depth and point cloud results on the KITTI dataset.
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Figure 3. Qualitative depth and point cloud results on the NYU-Depth-v2 dataset.



