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Table 1: Frequently used symbols in main text. We group
the symbols into two parts: simulation-related symbols and
Transformer[9]-related symbols,

Simulation-Related

Symbols Descriptions

M t, P t Mesh and patch-based mesh.
V t,V t

p Set of states for vertices and patches.
xt

i, ẋ
t
i, ẍ

t
i The position, velocity, and acceleration for vertex i.

EM ,EW Edge sets between vertices in mesh and world space.
EM

p ,EW
p Edge sets between patches in mesh and world space.

eij Edge between vertex i and j.
ag Attributes of garments.
wt The wind descriptor.
ηt Quaternion rotation of the wind.
st Strength of wind.

βk,αk Predicted velocity and acceleration.

Transformer-Related

Symbols Descriptions

W∗ Trainable parameters.
vi, qi State and query tokens for vertex/patch i.
ri, si Receiver and sender tokens for vertex/patch i.

µa,b, σa,b Mean and standard deviation between token a and b.
ωij Attention score between vertex/patch i and j.
R Rotation matrix in 3D space.

fi,j ,f
R
i,j Interactions in shared and canonical hidden space.

A. LayersNet

A.1. Symbols

We list the symbols mentioned in our main text as shown
in Table 1, which are grouped into simulation-related sym-
bols and Transformer[9]-related symbols.

A.2. Rotation Equivalent Transformation

In the main text, we propose Rotation Equivalent Trans-
formation with rotation invariant attention mechanism as
follows:

qi = Wqvi, ri = Wrvi, si = Wsvi, (1)

fi,j =
ri + sj

∥ri − sj∥
. (2)

ωij = softmax(q⊤
i fi,j), (3)

where vi is state token, qi is query token, ri is receiver
token and sj is sender token, Wq,Wr,Ws are trainable pa-
rameters. Here we show the proof that our proposed atten-
tion mechanism in equation 3 is rotation invariant. Given
query token qi, receiver token ri, and sender token sj
with d dimensions, we apply a high dimensional rotation
R ∈ Rd×d to rotate the tokens into corresponding canoni-
cal space as:

qR
i = Rqi, rRi = Rri, sRj = Rsj , (4)

f ′
i,j =

rRi + sRj
∥rRi − sRj ∥

= Rfi,j (5)

Therefore, the dot product in equation 3 is rotation invariant
as shown bellow

(qR
i )

⊤f ′
i,j = (Rqi)

⊤(Rfi,j) = q⊤
i R

⊤Rfi,j (6)

= q⊤
i fi,j . (7)

Hence, equation 3 is rotation invariant.

B. Dataset
Generating a dataset with multi-layered garments is

non-trivial – interpenetration between garments should be
avoided, and their dynamics should obey the physics rules.
Thanks to recent developments in physics-based methods,
several software, such as Blender1, can infer the interactions

1https://www.blender.org/

https://www.blender.org/


Table 2: We compare D-LAYERS with existing 3D datasets. Our dataset is composed of multi-layered clothes, with unique attribute
data, such as stiffness and friction, attached to each garment. Moreover, we include data of wind with its strength and direction randomly
sampled. *1: 3DPeople [7] does not specify the exact number of garments, while it claims to dress each subject with different outfits. *2:
The multi-layered garments in Layered-Garment do not follow physics laws and the penetrated vertices are forced to move out of inner
garments in hard-coded manner.

Dataset Dynamics Subjects Garments Multi-Layered Attributes Wind

3DPeople [7] 80 *1 N/A
TailorNet [6] 9 20 N/A
Cloth3D [2] ✓ 8.5K 11.3K 4
Layered-Garment [1] 142 101 *2 N/A

D-LAYERS (Ours) ✓ 4.9K 9.9K ✓ 9.9K ✓

Figure 1: Samples from our D-LAYERS. Our D-LAYERS focuses on the general scenarios of garment animations, which include
multi-layered garments with diverse topologies driven by various external forces, such as human bodies and wind. The garments include
jumpsuits (a), different dresses (b,c,d,g) and skirts (h,i), pants (e,f), T-shirts (e,f,h,i), jackets (b,e,g) and jackets with hood (a,c,d,f,h,i). The
topologies of the garments are also diverse and close to real-life cases. Different layers of garments interact with each other constrained by
physics law, leading to rich dynamics in our dataset.

among different clothes and generate faithful garments with
multiple layers. We show various samples in Figure 1, in-
cluding diverse garments with realistic dynamics driven by
complex human motions and sampled wind.

B.1. Generating Details

Although Blender does not support collisions among
multiple objects, it is able to solve collisions within one



object. Thus, by merging multiple garments as a single
mesh, we regard the collisions among different garments
as the interactions within one mesh, which can be solved by
Blender. In other words, different layers of garments will
interact with each other following the physics rules.

Before simulation, we properly dress the human body in
T-pose and scale up all objects 10 times the real-world size,
which can preserve more details of the garments such as
wrinkles.

B.2. Dataset Settings

We compare our dataset with existing datasets in Table 2.

Multi-Layered Garments. The main challenge is to have
interpenetration-free simulations for multiple objects. To
achieve that, we first drape the multi-layered outfit to SMPL
human body in T-pose, followed by a warm-up simulation
to solve the interpenetrations among garments. We adopt a
large collision distance to solve the interpenetrations. Af-
terwards, we merge the garments into one garment mesh
and conduct a simulation driven by the human body and
wind. Since all garments belong to one mesh after merg-
ing, the interactions among garments are computed through
the self-collision mechanism in Blender, which generates
interpenetration-free results in simulation.

Garments’ Attributes. Existing datasets cover a limited
choice for garment attributes, e.g., cotton or fabric. Tasks
like physics parameter estimations could barely benefit
from those datasets. To make garments animations more di-
verse and flexible, we uniformly sample different garments’
attributes, such as mass, stiffness, and friction. In addition,
we introduce different attributes to the inner and outer out-
fits, leading to more varieties. Specifically, we uniformly
sample the following attributes: vertex mass from 0.2 to 0.8;
stiffness of tension, compression, shear, and bending from
15 to 100; friction from 40 to 80. In this way, our dataset
include various dynamics of garments and can be used for
many tasks, such as physics parameter estimation.

Human Motion Sequences. We adopt the SMPL-based
human motion sequences from CMU MoCap in AMASS
[5], which includes 2,600 sequences with 30FPS in total.
During simulation, we randomly sample the human shapes
and genders for each sequence and extract sub-sequences
with a maximum of 600 frames. To accurately simulate
garments on human body, collision-free human meshes are
required to avoid invalid simulations. Since our dataset fo-
cuses on garments generations, we adopt linear regressions
to solve the self-collisions from SMPL models [4] and leave
a minimum gap of 0.004 meters before scaling up the hu-
man mesh. We skip the unresolvable collisions and discard
the corresponding frames.

Figure 2: We grouped garment’s vertices into patches given the
corresponding UV mapping. Based on the coordinates in UV, we
group the vertices according to their positions. Subsequently, we
divide the 3D garment mesh into patches based on the groups.

C. Experiments

C.1. Implementation Details

Patched Garment Model. We group the particles in gar-
ment’s mesh given corresponding UV mapping. Specifi-
cally, we divide the UV mapping into square patches ac-
cording to the UV coordinates, as shown in Figure 2. Then,
we group the garment’s vertices in 3D space given the
grouped UV mapping. When building the connections EM

of the patched garments, we connect patch i and patch j iff
there is at least one pair of vertices within the patches are
connected in 3D space.

LayersNet details. To obtain the world space edges EW ,
we adopt R = 0.4 to calculate the neighbors from the hu-
man mesh and R = 0.6 for different layers of garments.
We adopt h = 1 for the inputs of all objects’ states. The
hyperparameters λm, λn in our loss term are set to 1. When
trained with collision loss, we set λb = 1, λg = 0.1 by de-
fault. The optimal combination for the weight of the loss
term is λb = 1.3, λg = 0.1. In practice, we train Layer-
sNet without collision loss for one epoch as warmup, and
continue to train another 9 epochs using the collision loss.
We adopt Adam optimizer with an initial learning rate of
0.001 and a decreasing factor of 0.5 every two epochs. The
batch size is set to 4.

We adopt four different encoders for meshes, garment
attributes, wind attributes, and gravity. This is because the
four components belong to different domain space and have
different dimensions. Since the states of garments mesh
and human bodies mesh are from the same domain, we
share the encoder for them. All the encoders are two-layer
MLPs with dimensions 128. The only difference is the input
dimensions. We adopt 4 blocks of modified Transformer
block in LayersNet, with hidden dimensions 128 for each
block. The number of head in multi-head attention is set
to 8, while 4 heads apply the attention mask generated by



Table 3: We verify our implementation of DeePSD on Cloth3D accroding to official paper [3]. The results are similar to original paper,
suggesting that our implementation of DeePSD is similar to official one.

Method T-shirt Top Trousers Skirt Jumpsuit Dress

DeePSD 25.01±20.94 16.90±15.38 20.02±8.50 20.43±31.10 24.31±6.36 42.10±21.41

Table 4: Components of different splits and models’ corresponding Euclidean errors (mm). Notice that in our D-LAYERS, all objects are
scaled up 10 times than real-world size. To analyze the influence of different combinations in our D-LAYERS, we sample four splits from
our dataset: inner garments are tight clothes (jumpsuit) without wind (T); inner garments are tight clothes (jumpsuit) with strong wind
(T+W); inner garments are loose clothes (dress) without wind (L); inner garments are loose clothes (dress) with strong wind (L+W). The
models trained with only inner garments are marked by ∗. Notice that MGNet has worse generalization abilities due to garment-specific
design. LayersNet achieves superior and robust performance in most cases especially those with multi-layered garments.

Splits Methods on Inner Garment Methods on Layered Garments

DeePSD∗ MGNet∗ GarSim∗ LayersNet∗(Ours) DeePSD GarSim LayersNet(Ours)

T 225.3±106.4 5219.2±1565.8 284.2±145.0 220.0±195.3 1072.6±694.7 920.2±608.9 489.9±447.7
T+W 239.5±103.9 5186.8±1754.8 280.5±124.5 258.0±312.8 1121.0±731.7 999.5±686.2 508.5±562.7
L 501.3±300.1 4432.7±1438.0 534.6±333.0 344.7±244.5 887.8±460.5 929.6±509.7 378.0±293.0
L+W 577.5±373.9 4595.0±1215.2 621.1±403.9 347.4±288.9 1083.1±492.2 1050.0±523.4 467.8±403.7

Figure 3: Visualized samples on split T, where we train and test models with only inner garments (jumpsuit). The left are the training
samples while the right is test samples. MGNet is able to generate 3D garments on training examples on the left while has difficulties to
generalize to unseen examples in test set due to the garment-specific design. DeePSD and GarSim has faithful predictions on single-layered
garments. Our LayersNet faithfully rollouts 3D garments when only with inner clothes.

EM , and 4 heads adopt the attention mask generated by
EW . For the decoder, we adopt a three-layer MLPs with
a forward dimension of 128 and an output dimension of
3. When concatenating the nearest point on human mesh,
we mask the point vt+1

b,i to zeros if the there is no edge
eb,i ∈ EW connecting the human body point vt+1

b,i and gar-
ment point vt+1

i . For the inputs of garment mesh and human

body mesh, we adopt relative positions to the root of human
body mesh. Gravity inputs can be naturally transformed to
relative coordinates by subtracting the acceleration of the
body’s root. Since the wind’s attributes are still measured
in global coordinates, we also convert them to the relative
coordinates in implicit manner, i.e. convert the value of
strength in global coordinates to local coordinates defined



by the root of human body. Specifically, we concatenate
the position, velocity, and acceleration of the human body’s
root point vt

r as extra features wt = {qt, st,vt
r} and let

LayersNet learns the wind’s features in relative coordinates.
We apply ∆t = 1 in our experiments, which is independent
from the real time interval between each frames, which is
0.33s. When training LayersNet, we normalize the meshes’
states across the whole training set before feeding into the
model, which is a commonly adopted processing in litera-
ture.

During training, we gradually enlarge the maximum roll-
outs steps as mentioned in main text (Section 3.2) before
back-propagate the gradient. Specifically, the maximum
steps increase by 1 after each epoch. In practice, we set
the maximum steps as 0 at the first epoch and 9 at the 10-th
epoch. When training LayersNet with garment-to-garment
loss Lc,g , we penalize Lc,g only after the first epoch, since
Lc,g would enlarge the errors brought by unstable predic-
tions.

DeePSD details. We implement DeePSD according to the
original paper [3] and verify the performance of DeePSD
on Cloth3D as shown in Table 3. Our implementation of
DeePSD achieves similar performance compared with the
original paper.

C.2. Comparisons

Influence of Multi-Layered Garments and Wind. For
convenience, we copy the table in main text for reference
as shown in Table 4 which shows the quantitative results
from four splits of our dataset. We show the qualitative re-
sults in Figure 3 Specifically, the results on the first three
rows, where models are marked by *, are obtained by train-
ing models with only inner garments. The remaining results
are obtained by training on both inner and outer garments on
all splits.

Notice that we scale up the human mesh and garment
mesh 10 times the real-world size, the corresponding errors
are also scaled up. Thus, DeePSD*, which is trained with
only inner single-layered garments, achieves similar results
on both datasets: the Euclidean errors of jumpsuit and dress
are similar on both D-LAYERS and Cloth3D, suggesting
that the quality of our dataset is not worse than Cloth3D. We
also implement GarSim given the original paper [8]. And
the reuslts, especially the loose garments, are close to the
original paper.

We further visualize some samples from split T within
only inner garments in Figure 3. When trained with only
inner garments (jumpsuit), DeePSD [3] is able to predict
faithful rollouts. MGNet [10] is able to generate 3D gar-
ments on training samples while struggles to generalize to
unseen garments from test examples due to the garment-
specific design. In original paper of MGNet, they train

Figure 4: An animation sample by LayersNet. Specifically, the
garments are driven by both human body and wind. As the wind
blowing the garments, the clothes gradually and faithfully wave in
the air, suggesting that our LayersNet is able to extend to various
types of outer forces.

MGNet with only on 300 frames of data with the same gar-
ment topology, while in our dataset each garment is unique
with different topology. In contrast, our LayersNet achieves
faithful predictions in this simplified case.

General Garment Animations. We report detailed com-
parisons in Table 5. Besides the comparisons in main text,
we visualize several samples by DeePSD and GarSim for
reference in Figure 5. As discussed in the main text, the
garments in our dataset D-LAYERS, especially the outer
clothes, are more flexible and are able to respond to var-
ious garment attributes. Consequently, the high flexibility
brings more challenges to DeePSD and GarSim, leading to
difficulties in convergence. The collision loss for DeePSD
further introduces noises due to inaccurate garment meshes
proposed by DeePSD without collsision loss, and leads to
higher euclidean errors. In contrast, our simulation-based
LayersNet animates garments in topology-independent and
unified manners and successfully animates garments on
general scenarios.

Additionally, we display more qualitative results of our
LayersNet in Figure 4 and Figure 6. Specifically, We ap-
ply customized wind in Figure 4 and animate the garments
driven mainly by wind. We animate garments with diverse
topologies in various scenarios in Figure 6. Surprisingly,
we find that LayersNet is still able to successfully animate
garments for long sequences even on complex scenarios.

Limitations. Simulating particle-wise interactions en-
ables LayersNet to animate garments with diverse topolo-
gies driven by various external forces in a unified manner,
leading to highly generalizable abilities in unseen scenar-
ios. Since the predictions of future frames are based on



Table 5: Euclidean error (mm) on sampled D-LAYERS with maximum sequence length of 35 frames. The collision rates between
different layers of garments are shown under L-Collision, while the collision rates between garments and human bodies are shown under
H-Collision. Models trained with collision loss Lc,b, Lc,g are marked by +. Our LayersNet achieves superior results in all cases.

Methods Jacket Jacket + Hood Dress Jumpsuit Skirt

DeePSD 1385.3±886.6 1087.8±564.5 736.8±466.6 535.2±224.7 1107.3±769.2
DeePSD+ 1830.1±803.3 1566.0±527.1 1333.0±349.2 1219.0±186.8 1194.7±311.2
GarSim+ 1412.1±886.8 1139.1±653.5 674.4±451.8 317.8±157.4 689.9±386.7
LayersNet(Ours) 571.9±451.9 493.9±354.2 397.2±342.2 264.0±200.2 301.3±79.3
LayersNet+(Ours) 567.3±425.5 491.4±361.3 379.1±299.7 260.1±222.2 299.5±92.3

Methods Pants T-shirt Overall L-Collision(%) H-Collision(%)

DeePSD 498.8±109.5 613.1±338.2 1049.8±549.7 10.11±5.31 23.89±7.89
DeePSD+ 1185.7±213.3 1202.9±233.6 1563.4±486.8 8.78±5.12 19.47±6.38
GarSim+ 317.8±150.1 447.6±303.8 1028.3±581.0 6.03±4.23 15.11±7.11
LayersNet(Ours) 234.4±206.3 273.3±169.0 472.8±343.5 3.13±2.22 10.68±4.53
LayersNet+(Ours) 200.9±140.1 267.8±189.6 467.2±330.7 3.77±2.60 2.16±1.46

previous rollouts by the model, the errors inevitably ac-
cumulate as the length of predictions, which is a common
problem in simulation. As shown in Figure 4 and Figure 6,
LayersNet rollouts some artifacts when the sequences are
too long or external forces are too fierce. We will explore
more strategies in the future to alleviate the problem, such
as adding physics constrains to penalize the inertia.



Figure 5: The outer garments in our dataset are more flexible, especially when interacting with inner garments, and are able to respond to
different garment attributes, such as friction, leading to rich dynamics. DeePSD has difficulites in handling the rich dynamics in our dataset
leading to low quality predictions. DeePSD+, which is finetuned on DeePSD using collision loss, is slightly better than DeePSD and solve
part of garment-to-human collisions. However, DeePSD+ gets lower performance and higher euclidean errors, suggesting that DeePSD
has limited abilities to handle general scenarios in D-LAYERS, such as the complex dynamics introduced by multi-layered garments.
While GarSim is also a static garment model sharing many similarities with DeePSD, it suffers from similar problems and struggles with
the highly flexible dynamics of garments in D-LAYERS. In contrast, our LayersNet achieves faithful rollouts of garments with various
topologies in a unified manner.



Figure 6: Additional qualitative results by LayersNet on our D-LAYERS. Our LayersNet is able to animate diverse garments driven by
various external forces and achieves faithful rollouts with long sequences. We recommend readers to go through the attached videos for
better views of dynamics.
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