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In the supplementary material, we discuss the periodic-
ity of physics-based prior confidence and the robustness to
the refractive index in Addition Results. Then we provide a
detailed analysis of the noise in the AoLP map as a supple-
ment to the main text. We also demonstrate the calculation
of the physics-based prior used in our paper. Finally, we
provide details about our dataset and network architecture.

1. Additional Results

1.1. Abalation Study on the Periodicity of Physics-
based Confidence

As mentioned in the main text, the physics-based confi-
dence is not only low in the area with high transmittance,
but also at the junction of 0 and π in the AoLP map. This
situation is caused by the periodicity of AoLP and it is al-
lowed since the lower confidence of the physics-based prior
in such area is helpful to avoid the network being misguided
by the jumped physics-based prior. Here we conduct the ab-
lation study on this to support our argument.

To keep the confidence of the areas with junction from
being suppressed, we re-calculate the confidence map on
the AoLP value φ′ after the following periodic modulation:

φ′ =

{
2φ 0 ≤ φ < π

2

2(π − φ) π
2 ≤ φ ≤ π

(1)

where φ is the original captured AoLP value.
Fig.1 shows the confidence maps under different defini-

tions. It can be seen that the confidence value will not be
suppressed in the areas with junction between 0 and π af-
ter periodic modulation. We conduct the experiment on the
two confidence maps. As shown in Fig.2, allowing the areas
with junction have larger confidence will result in the worse
performance. The normals provided by the physics-based
prior are discontinuous in such areas, and the jumping in-
formation brings difficulty for the neural network which is
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Figure 1. Physics-based prior confidence maps under different
definitions. (a) confidence map without period definition(used in
our main text). (b) confidence map with period definition

inclined to learn low-frequency information. This argument
is also supported by the quantitative results in Table 1.

(a) (b)

Figure 2. Network performance with different physics-based
prior confidence denitions (a) network performance without pe-
riod definition. (b) network performance with period definition
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Table 1. Network performance with different physics-based prior
confidence denitions

Studied Module
Angular Error Accuracy

Mean Median 11.25 22.5 30

w periodicity 16.69° 13.13° 47.78% 82.17% 92.45%
w/o periodicity(Ours) 16.29° 12.85° 48.31% 83.20% 93.90%

1.2. Robustness to Refractive Index

In our paper, we use the assumption that the refractive in-
dex is 1.52 to facilitate offline calculation of physics-based
prior. To verify the impact of this assumption on the esti-
mation performance, we conduct the ablation study on the
refractive index. The quantitative results are listed in Table
2, from which we can see that our method’s performance is
robust to the refractive index used in the physics-based prior
calculation.

Table 2. Performance of our method with different refractive index
Refractive Index 1.4 1.5 1.52 1.6 1.7

Mean Error 16.54° 16.34° 16.29° 16.62° 16.58°
Median Error 13.21° 13.03° 12.85° 13.25° 13.32°

In Fig.4, we show curves of Eq.2 under different refrac-
tive indexes. The difference between them is small, only
when ρs is close to 1, the zenith error with different refrac-
tive indexes is relatively large and the maximum zenith error
is limited to single-digit degrees. Therefore, the refractive
index can not have a significant impact on the physics-based
prior, which is the source of our network’s robustness to the
refractive index.

2. Analysis of Noise in AoLP Map
2.1. π

2 -ambiguity

According to the dichromatic reflectance model[1], the
reflected light from the surface of an object is the superpo-
sition of specular reflection and diffuse reflection as shown
in Fig.3.

Specular reflection is the direct reflection of the surface.
Following the Fresnel equations, the degree of linear polar-
ization(DoLP) and angle of linear polarization(AoLP) can
be written as follows by given azimuth ϕ, zenith angle θ
and relative refractive index η:

ρs =
2 sin2 θ cos θ

√
η2 − sin2 θ

η2 − sin2 θ − η2 sin2 θ + 2 sin4 θ
(2)

φs = ϕ± π

2
(3)

Different from the specular reflection, the incident light
is re-emitted into the air after it enters and scatters on the
medium. The re-emitted light is diffuse reflection light.
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Figure 3. Different components captured by polarization cam-
era. The captured ray consists of reflection and transmission com-
ponents, where the transmission component is composed of two
kinds of reflections from the rough background

Similarly, the DoLP ρd and AoLP φd can be obtained by
Fresnel equation:

ρd =
(η − 1/η)2 sin2 θ

2 + 2η2 − (η + 1/η)2 sin2 θ + 4 cos θ
√
η2 − sin2 θ

(4)

φd = ϕ± π (5)

Eq.3 and Eq.5 indicate that there is a phase shift of π/2
between φs and φd, i.e., the π

2 -ambiguity. This ambigu-
ity occurs on the surface that the dominance of specular re-
flection and diffusion reflection can not be determined. In
this paper, the surface of transparent object is smooth and
the diffuse reflection can be ignored. Therefore, only Eq.2
and Eq.3 are adopted for physics-based prior calculation.
For the rough background surface, π

2 -ambiguity may exist,
which is described in detail below.

2.2. Noise from Background in the AoLP Map

Since the background is a rough surface, its surface
reflected light has both specular and diffuse components.
Suppose the intensity functions of specular and diffuse re-
flection have the following forms:

Ibs(θpol) = Ibs [1 + ρbs cos(2αpol − 2φb
s)] (6)

Ibd(θpol) = Ibd[1 + ρbd cos(2αpol − 2φb
d)] (7)

where αpol is the angle of the polarizer in front of the cam-
era. Therefore the intensity function of each point of the
background can be obtained by superposition Ibs(αpol) and
Ibd(αpol):



Ibr(αpol) = Ibs [1 + ρs cos(2α− 2φb
s)] + Ibd[1 + ρbd cos(2α− 2φb

d)]

= Ibs + Ibd + Ibsρ
b
s cos(2α− 2φb

s) + Ibdρ
b
d cos(2α− 2φb

s ∓ π)

= Ibs + Ibd + |Ibsρbs − Ibdρ
b
d| cos[2α− 2(φb

s −
1− sign(Ibs ρ

b
s − Ibdρ

b
d)

2
π)]

= Ibr0[1 + ρbr cos(2α− 2φb
r)]

(8)
Therefore, the aolp of each point φb

r in the background
can be written as:

φb
r = φb

s −
1− sign(Ibs ρ

b
s − Ibdρ

b
d)

2
π (9)

The π
2 phase shift occurs when the dominance(signs of

Isρ
b
s − Idρ

b
d) of specular and diffuse reflection components

between adjacent pixels changes, which is the source of the
noise from the background. It is mentioned in the main text
that although the polarization state of Ibr will change when
the ray passes through the transparent object, the noise char-
acteristic of φt is still consistent with φb

r.

3. Calculation of Physics-based Prior
According to Eq.2 and Eq.3, the corresponding zenith

angle and azimuth angle can be solved from the observed
DoLP and AoLP, but the solution is not unique. It can be
easily seen that an AoLP φ corresponds to two azimuth an-
gles ϕ1, ϕ2. For DoLP ρ, as shown in Figure 3, each DoLP
value also corresponds to two zenith angles θ1, θ2.

By combining the zenith and azimuth angles, we can get
four normals:

Nphy0 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1) (10)

Nphy1 = (sin θ2 cosϕ1, sin θ2 sinϕ1, cos θ2) (11)

Nphy2 = (sin θ1 cosϕ2, sin θ1 sinϕ2, cos θ1) (12)

Nphy3 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2) (13)

These four normal maps contain the possible orientations
of each point on the surface. Because of the physical polar-
ization theory information contained in them, we regard and
call them as the physics-based prior.

Since Eq.2 is a highly nonlinear function, it is difficult to
obtain the analytical expression of θ(ρs). We adopt the it-
erative method to solve the approximate solutions of θ1, θ2,
which is a time-consuming process and hence we calculate
the physics-based prior offline and input it to the network
instead of replacing it with some layers in the network.
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Figure 4. Relationship between DoLP and zenith angle in spec-
ular reflection. We draw the relationship between DoLP and
zenith angle under different refractive indexes, and each DoLP
corresponds to two zenith angles, which means there is ambigu-
ity in the zenith angle calculation

4. Details of Our Dataset and Network
4.1. Dataset Details

Our dataset consists of real-world and synthetic collec-
tions and their acquisition setup and method have been de-
scribed in our main submission. As shown in Fig.5, the
real-world collection has 486 samples of 10 objects and the
synthetic part has 936 samples of 13 objects, respectively.

Each sample includes the following information: I0◦ ,
I45◦ , I90◦ , I135◦ , Intensity map(I), DoLP map(ρ), AoLP
map(φ), mask map, four physics-based prior normal maps,
and ground-truth normal map. Where I0◦ , I45◦ , I90◦ , I135◦
is the original intensity maps captured by our polarization
camera. The polarization state (I, ρ, φ) can be calculated
from the four intensity maps:

I =
I0◦ + I45◦ + I90◦ + I135◦

4
(14)

ρ =

√
(I0◦ − I90◦)2 + (I45◦ − I135◦)2

I0◦ + I90◦
(15)

φ =
1

2
arctan

I45◦ − I135◦

I0◦ − I90◦
(16)

Then the polarization state can be used to calculate physics-
based prior by exploiting Eq.2 and Eq.3. Only specu-
lar reflection model is used here since the diffuse reflec-
tion on smooth transparent surface is tiny. The mask map
and ground-truth normal map are generated after manually
aligning the ground-truth 3D model with the captured po-
larization image.



Synthetic Dataset Real-world Dataset
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Figure 5. TransSfP Dataset. TransSfP dataset consists of two parts: synthetic dataset and real-world dataset. The synthetic dataset consists
of 936 samples of 13 objects (including the front and back of the same object) at different angles. The real dataset consists of 486 samples
of 10 objects at different angles

4.2. Detailed Network Architecture

The overview of our network has been given in Fig.3 of
the main submission. The main structure of the encoder is
ResNet50[3] with EPSABlock[6]. Table 3 lists the struc-
ture and parameters of the modules used in our network.
Resnet50 with EPSABolck is used in Down1,2,3,4, and its
structure is so large that can not list here, which detailed
structure is provided in the code files in the attachment, as
true is ASPP module. The structures of Up 1,2,3,4 and Fu-
sion 1,2,3,4 are similar, the only difference is the number of
channels in the convolution layers.
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Table 3. Detailed description of each module in our network
architecture. The BN and IN in this table represent batch nor-
malization[4] and instance normalization[5], respectively

Module Block

Down 0


1× 1, 64

BN,ReLU
7× 7, 64, stride 2

BN,ReLU
3× 3 max pool stride 2


Down 1 ResNet50 Stage 1 with EPSABlock[6]
Down 2 ResNet50 Stage 2 with EPSABlock
Down 3 ResNet50 Stage 3 with EPSABlock
Down 4 ResNet50 Stage 4 with EPSABlock
ASPP ASPP module[2] with dialations of [1, 12, 24, 36]

Up 4(3,2,1)


Fusion Module 4(3, 2, 1)

Bilinear Upsample
3× 3, 512(256, 128, 64)

IN,LeakyReLU
1× 1, 256(128, 64, 32, 16)

IN,LeakyReLU



Fusion 4(3,2,1)


Bilinear Upsample

3× 3, 1024(512, 256, 64)
IN,LeakyReLU

1× 1, 256(128, 64, 32)
IN,LeakyReLU



Fusion 0


Bilinear Upsample

3× 3, 64
IN,LeakyReLU

1× 1, 16
IN,LeakyReLU


Up 0

 3× 3, 32
IN,LeakyReLU

1× 1, 3



volutional neural network. arXiv preprint arXiv:2105.14447,
2021. 4


