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Figure 7: DeHiB [48] fails because it cannot obtain the tar-
get class as pseudo-labels for its poisoning data.

A. Systematic evaluation of existing backdoor
attacks

Previous works have proposed numerous backdoor at-
tacks under different threat models. But all works, except
DeHiB [48], consider fully-supervised setting. Hence, we
first present a systematic evaluation of existing state-of-the-
art backdoor attacks and explain why they fail in SSL set-
tings. Based on our evaluations, we provide three major
lessons that are fundamental to our attack design and gen-
erally apply to any (future) backdoor attacks against semi-
supervised learning.

We start our evaluations from DeHiB [48], the only exist-

ing backdoor attack on semi-supervised learning, and based
on the lessons learned from this evaluation, we chose the
next type of attacks to evaluate. As we see from Table 1,
each of our lessons applies to multiple backdoor attacks of
a specific type and characteristics. However, for concise-
ness, we evaluate one or two representative attacks from
each type and provide lesson/s that are useful in designing
stronger attacks.

A.1. Attacks should be clean-label attacks

We first evaluate Deep hidden backdoor (DeHiB) [48]
attack. DeHiB poisons only the unlabeled data, Du, but it
assumes a strong, unrealistic adversary who can access the
labeled data, Dl. It first samples some data (X,Y ) from
both target, yt, and non-target, y\t, classes. Then it uses a
model trained on Dl to add universal adversarial perturba-
tion Pt to X such that the perturbed data X + Pt 7→ Xp

is classified as yt; as we only poison Du, we denote poi-
soning data by Xp. Finally, it adds a static trigger T to
the perturbed data Xp. Intuition behind DeHiB is that, due
to Pt, SSL algorithm will assign target class yt as pseudo-
labels to all Xp and force the target model to associate static
trigger T to yt and ignore original features X .

Why does DeHiB fail? Recall from Section 2.1 that all
of state-of-the-art SSL algorithms use various strong aug-
mentations, including, cutout [15], adding various types of
hue [39], horizontal/vertical shifts [43], etc. Next, note
that adversarial perturbations are sensitive to noises [1], i.e.,
even moderate changes in the perturbations render them
ineffective. Hence, in presence of strong augmentations,
adversarial perturbations fail to obtain the backdoor target
class yt as the pseudo-labels for Xp of DeHiB as shown
in Figure 7. Hence, the very fundamental requirement of
DeHiB does not hold in SSL and leads to its failure. The
original DeHiB work reports slightly better results, because
it assumes access to Dl, which our threat model does not
allow. Hence, we use randomly sampled data of size |Dl|
from entire CIFAR10 data to obtain DeHiB’s Pt.
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Figure 8: Clean-label Badnets [19] obtains the target class
as pseudo-labels for its poisoning data, but cutout augmen-
tation occludes its small trigger and renders it ineffective.

To summarize, adversarial perturbations are sensitive to
noises. Hence, using adversarial samples from non-target
classes as poisoning samples cannot guarantee the desired
pseudo-labeling to yt. Effectively, such attack tries to train
the model to associate the trigger pattern T with multiple
labels, and hence, fails to inject the backdoor functionality.
For the same reason, we also observed that any dirty-label
static trigger attacks completely fail against SSL. Hence,
backdoor attacks on SSL should be clean-label attacks, i.e.,
use poisoning samples Xp from yt, and leverage benign
features of Xp to obtain desired pseudo-labels yt for them.

Lesson-1: Backdoor attacks on semi-supervised learning
should be clean-label style attacks, which sample their
poisoning samples from the backdoor target class.

A.2. Backdoor trigger should span the whole sample

Based on Lesson-1, we choose to evaluate clean-label
attacks. But, we consider small trigger pattern attacks to
emphasize the importance of the trigger sizes towards at-
tack efficacy against semi-supervised learning. In particu-
lar, we evaluate clean-label Badnets (CL-Badnets) [50] at-
tack, which adds a static trigger, e.g., a pixel pattern with
single/multiple squares, to the samples X from the target
class, yt to get poisoning data Xp. It then injects Xp into
the unlabeled training data Du.
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Figure 9: Narcissus [50] fails because its noise-sensitive
adversarial trigger pattern cannot obtain the target class
as pseudo-labels for its poisoning data, and furthermore,
strong augmentations easily occlude its non-repeating trig-
ger pattern.

Why does CL-Badnets fail? This clean-label style at-
tack ensures that the model assigns yt to all the poison-
ing samples. However, all the semi-supervised algorithms
use a strong augmentation technique called random-crop (or
cutout) that randomly crops a part of a sample. Because
of this, the trigger is generally absent in many of the aug-
mented instances of a poisoning sample as shown in Fig-
ure 8. This majorly reduces the impact of this attack as our
results show in Tables 2 and 3.

Lesson-2: To ensure that all the augmented instances of
a poisoning sample contain the backdoor trigger, the trig-
ger should span the entire sample (images in case of our
work).

A.3. Trigger pattern should be noise-resistant and
repetitive

The only attacks that obey the restrictions of Lessons-1
and -2 are the clean-label backdoor attacks on supervised
learning. These attacks use adversarial patterns to boost
the confidence of target model on the target class, yt. Ta-
ble 1 lists recent attacks of this type; we evaluate two state-
of-the-art attacks among them: Narcissus [50] and Label-



consistent (LC) [44].
Narcissus fine-tunes a pre-trained model using data Xt

sampled from yt distribution. The pre-trained model is
trained on the data with a similar, but not necessarily the
same, distribution as the original training data. Then, it
computes adversarial perturbation Pt that minimizes the
loss of the fine-tuned model on Xt. Finally, it selects few
data xt ∈ Xt and injects xt + Pt as the poisoning data Xp

into the unlabeled training data Du. On the other hand, LC
attack is very similar to DeHiB. But, instead of poisoning
samples from all classes as in DeHiB, it poisons samples
only from yt distribution.

Why do Narcissus/LC fail? The reason for this is two-
fold: (1) Narcissus ands LC attack use adversarial pertur-
bations Pt as their triggers. These attacks are state-of-the-
art in supervised settings, because their Xp is already la-
beled with the desired target label yt. But, Pt is highly sen-
sitive to noise, and hence, with even weak augmentations
in semi-supervised learning, these perturbations fail to ob-
tain the desired pseudo-labels yt for Xp (Figure 9). (2) As
random-crop augmentation crops a sample, it also crops the
universal adversarial perturbation based Narcissus/LC trig-
gers Pt and renders these attacks ineffective against semi-
supervised learning.

To summarize, the trigger pattern T should be repetitive.
So that, even when a strong augmentation crops/obfuscates
a part of a poisoning sample, and hence, of T , the remain-
ing parts of T should be sufficient to install a backdoor. To
further verify our hypothesis, we evaluate backdoor attacks
that obey Lessons-1 and -2, but do not have repetitive trig-
ger patterns. We present some of these patterns in Figure 10
in Appendix C, but as expected, these patterns fail to back-
door SSL.

Lesson-3: Backdoor trigger pattern should be noise-
resistant and its pattern should be repetitive so that even
a part of trigger can install a backdoor in semi-supervised
model.

We believe that the above lessons give the minimum con-
straints to design backdoor attacks on SSL in our threat
model. But, they are not exhaustive and should be modified,
e.g., based on different threat models and SSL algorithms.

B. Missing details of experimental setup
B.1. Datasets and model architectures

We evaluate our backdoor attacks using four datasets
commonly used to benchmark semi-supervised algorithms.
CIFAR10 [20] is a 10-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing),
each of size 32 × 32 and has 3 channels. CIFAR10 is a class-
balanced dataset, i.e., each of the 10 classes have exactly
6,000 images. We use different sizes of labeled data de-

Table 6: Sizes of labeled data we use for various combi-
nations of datasets and semi-supervised algorithms; unless
specified otherwise, we use these sizes throughout our eval-
uations.

Dataset Algorithm
MixMatch ReMixMatch UDA FixMatch FlexMatch

CIFAR10 4000 100 100 100 100
SVHN 250 250 100 100 100
STL10 3000 1000 1000 1000 1000

CIFAR100 10000 2500 2500 2500 2500

pending on the algorithm; the sizes are given in Table 6. As
proposed in original works [40, 3], we use the same num-
ber of the labeled samples for each of the 10 classes, i.e.,
for MixMatch (FixMatch) we use 400 (10) labeled data per
class. We use WideResNet with depth of 28 and widening
factor of 2, and 1.47 million parameters.
SVHN [32] is a 10-class classification task with 73,257 im-
ages for training and 26,032 images for testing, each of size
32 × 32 and has 3 channels. Unlike CIFAR10, SVHN is not
class-balanced. Table 6 gives the labeled training data sizes
we use for various semi-supervised algorithms. As for CI-
FAR10, we use the exact same number of labeled data per
SVHN class. For SVHN, we use the same aforementioned
WideResNet.
CIFAR100 [20] is a 100-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing),
each of size 32 × 32 and has 3 channels; CIFAR100 is class-
balanced. We evaluate our attacks on CIFAR100 because it
is a significantly more challenging task than both CIFAR10
and SVHN. Table 6 shows the sizes of labeled training data.
We use WideResNet model with depth of 28 and widening
factor of 8, and 23.4 million parameters.
STL10 [8] is a 10-class classification task designed specifi-
cally for the research on semi-supervised learning. STL10
has 100,000 unlabeled data and 5,000 labeled data, and it
is class-balanced; each sample is of size 96 × 96 and has
3 channels. Table 6 shows the sizes of labeled training
data we use for training. Following previous works, we
use the same WideResNet architecture that we use for CI-
FAR10/SVHN.

B.2. Details of the hyperparameters of experiments

Training hyperparameters: We run our experiments using
the PyTorch code from TorchSSL repository [45]. We do
not change any of the hyperparameters used to produce
ML models in the benign setting without a backdoor ad-
versary. For the results in Table 3, we run all experiments
for 200,000 iterations and present the median of results of 5
runs for CIFAR10 and SVHN, 3 runs for STL10 and 1 run
of CIFAR100.
Attack hyperparameters: For the baseline DeHiB1 and Nar-

1https://github.com/yanzhicong/DeHiB



cissus2 attacks, we use the code provided by the authors.
For clean-label Badnets, we use a 4-square trigger shown in
Figure 8 and set the intensity of all pixels in the 4 squares
to 255. For our backdoor attack, we use trigger pattern dis-
cussed in Section 3.4, and unless specified otherwise, use α
values described in Table 3.
Number of SSL iterations for ablation study: Follow-
ing [5], we reduce the number of iterations to 50,000
(for FixMatch) and to 100,000 (for the less expensive
MixMatch and ReMixMatch) for our ablation studies in
Section 5.2, as SSL is computationally very expensive. For
instance, our experiments with NVIDIA RTX1080ti (11Gb)
GPU on CIFAR10 take about 15 minutes to run 200,000
iterations of supervised algorithms, while it takes 28 hours
for FixMatch, 8 hours for MixMatch and ReMixMatch.
Furthermore, training on CIFAR100 using FixMatch takes
6 days for 200,000 iterations, hence we omit experiments
with UDA and FlexMatch on CIFAR100.

C. Missing details of our attack method and
evaluations.

Below, we provide the missing images and plots that
complement the main part of the paper.

• Figure 10 shows different backdoor patterns that obey
Lessons-1 and -2, but do not have repetitive trigger pat-
terns. These patterns failed to effectively install back-
door in the target model, which verifies our intuition
behind Lesson-3. For detailed discussion, please check
Section A.3.

• Figure 11 shows the impact of varying labeled data
sizes |Dl| on ASR, CA and TA. In case of SVHN with
MixMatch, we observe relatively lower ASRs across
various |Dl|’s. Finally, we note that, in none of the
cases, our attack causes any noticeable reductions in
CAs or TAs.

• Figures 14, 15 and 16 show images from, respectively,
CIFAR10, SVHN, and STL10 datasets, when poisoned
with our backdoor triggers with intensity, α, given in
Table 3. For more details about our backdoor trigger,
please check Section 3.4.

C.1. Negative results: Alternate or failed attacks
methods

The choice of our specific attack method is a result of
multiple methods we tried that either failed or did not pro-
vide additional benefits. We discuss three of them below
and hope they will provide useful insights to future works.

2https://github.com/ruoxi-jia-group/Narcissus-
backdoor-attack

ramp pattern sinusoidal pattern circular pattern

Figure 10: Additional trigger patterns that we investigated
while designing our backdoor attacks. Note that ramp and
sinusoidal patterns are somewhat repetitive, i.e., if we zoom
in on any of their parts we get similar pattern, but this is not
the case for ciucular pattern.
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Figure 11: Impacts of varying labeled training data size,
|Dl|, for SVHN dataset and {FixMatch, MixMatch} algo-
rithms. Upper row shows ASRs and lower row shows clean
and target accuracies.

C.1.1 Combining Narcissus with our backdoor attack

We designed an attack with trigger pattern that combines
Narcissus trigger and our static pattern trigger. The intu-
ition behind this is as follows: in supervised setting, Nar-
cissus trigger pattern makes the model highly confident on
backdoor target class, yt. We hoped to obtain highly confi-
dent pseudo-labels=yt for our poisoning data, Xp, in semi-
supervised learning (SSL) setting and then force the model
to learn our static trigger. Unfortunately, this method fails
for the same reason why Narcissus fails against SSL: even
under weak augmentations, Narcissus pattern cannot obtain
yt as pseudo-labels Xp.
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Figure 12: Strip [17] defense, with a few exceptions (e.g., SVHN
+ FixMatch), fails to detect our backdoored test inputs.

C.1.2 Duplicating poisoning data

Recall from Section 5.1.4 that for a backdoor attack to suc-
ceed, the semi-supervised algorithm should first assign yt

as pseudo-labels to Xp. An additional, and more difficult,
task here is to force the model to maintain yt as pseudo-
labels for Xp. To achieve this, we make K copies of Xp

and add them to the entire training data, while maintain-
ing the overall percentage of Xp at 0.2%. In many cases,
this strategy succeeds and provides higher ASRs, e.g., CI-
FAR10 and UDA (FlexMatch), duplication achieves 84.3%
(89.1%) ASR as opposed to 81.5% (87.9%) in our attack
method. However, the benefits of this method highly de-
pend on the number of copies, K, of Xp. Unfortunately,
tuning of K renders this method less useful.

C.1.3 Interpolation based attack

Recently, Carlini [5] proposed an interpolation based tar-
geted attack on semi-supervised learning that poisons unla-
beled training data. We design an interpolation based back-
door attack under our threat model (Section 3.1). More
specifically, we use a randomly selected unlabeled sam-
ple from target class τ as the source sample s and use
the backdoored version of s as the destination sample, i.e.,
d = s+ T where T is a static trigger pattern, i.e., similar to
Figure 2 but with high intensity, α. We use linear interpo-
lation to obtain 10 poisoned samples p’s for each s, where
p = β · s + (1 − β) · d, where β takes 10 values ∈ [0, 1].
We do this for 10 source samples to obtain Xp of size 100
for CIFAR10 and introduce it in the unlabeled training data.
Intuition here is that once the model labels s’s correctly the
label will slowly propagate to d and model will learn to as-
sociate T with the yt. This backdoor attack does not achieve
high ASRs. We suspect that this is because, although all Xp

are assigned yt as desired, many of Xp constructed using
lower β values do not contribute to learning the backdoor
task, and the effective Xp reduces significantly.

C.2. Defenses

Prior literature has proposed numerous defenses to mit-
igate backdoor attacks due to their severe consequences.
Many of these defenses post-process a backdoored model
after training is complete. Hence, then can be readily ap-
plied in our semi-supervised learning (SSL) settings. In

this work, for brevity, we evaluate four state-of-the-art post-
processing defenses and one in-processing defense, which
are commonly used to benchmark prior attacks. Table 7
shows the results for CIFAR10 and SVHN datasets with
0.2% of training data poisoned. Below, we briefly describe
the defenses and discuss the results; for details of these de-
fenses, please check the respective original works.

C.2.1 Standard fine-tuning

This defense finetunes the backdoored model using some
available benign labeled data; we finetune using the labeled
training data of SSL algorithm and tune learning rate hyper-
parameter and produce the best results. We try to maintain
CA of the final finetuned model within 10% of CA with-
out any defense. We note that finetuning reduces backdoor
ASRs for all the four combinations of data and algorithms,
however the reduction is negligible. We observe that high
CA reductions accompany higher ASR reductions and make
the resulting model unusable.

C.2.2 Fine-pruning [27]

Fine-pruning first prunes the parameters of the last convolu-
tional layer of a backdoored model, that benign data do not
activate and then finetunes the pruned model using the avail-
able benign labeled data. Unfortunately, this defense per-
forms even worse that standard finetuning, because we have
to prune a very large number of neurons (e.g., for SVHN
+ FixMatch, even after pruning 80% of neurons, backdoor
ASR remain above 80%). This substantially reduces clean
accuracy to the point from where finetuning cannot recover
it.

C.2.3 Neural attention distillation (NAD) [24]

NAD proposes to first finetune a backdoored model to ob-
tain a teacher with relatively lower ASRs. Then, NAD
trains the original backdoored model, i.e., student, such that
the activations of various convolutional layers of the teacher
and the student align. We found that NAD performs the
best among all the defenses we evaluated. It reduces the
ASR by 22.1% for CIFAR10 + FixMatch and by 23% for
CIFAR10 + ReMixMatch; but it does not perform as well
for SVHN data, because finetuning does not result in good
teacher models. Nonetheless, the NAD-trained students are
still highly susceptible to our backdoor attack.

C.2.4 Strip [17]

Unlike above defenses, Strip aims to identify backdoored
test inputs, and not to remove backdoor from the back-
doored model. The intuition behind Strip is that backdoored
models will output the target class label for backdoored test



Table 7: Efficacy of state-of-the-art learning-algorithm-agnostic defenses against our backdoor attacks.
Data Algorithm No defense FT FP NAD ABL

CA ASR CA ASR CA ASR CA ASR CA ASR

CIFAR10 FixMatch 93.5 88.1 92.9 81.5 91.7 82.6 88.4 64.0 93.2 89.3
ReMixMatch 90.6 84.3 90.7 76.8 88.9 81.8 87.1 61.3 90.0 86.1

SVHN FixMatch 94.5 97.1 93.4 95.2 95.1 98.1 82.3 92.1 94.0 97.1
MixMatch 93.2 83.7 92.1 79.4 92.8 80.8 84.3 80.4 93.1 84.1
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Figure 13: Anti-Backdoor Learning (ABL) defense fails
against our backdoor attacks, because in semi-supervised
learning, unsupervised losses on poisoning and benign data
are very similar. Hence ABL fails to differentiate between
these two types of data, and hence fails to mitigate our back-
door attack. Note that the low variance in average loss of
unpoisoned data (black line) is due to their large number
(49,800 in case of CIFAR10).

inputs even when they are significantly perturbed, while its
output will vary a lot for perturbed benign, non-backdoored
inputs. We observe that Strip in fact works very well
against SVHN + FixMatch, and successfully identifies over
90% of the backdoored test inputs, but it completely fails
against CIFAR10 + FixMatch/ReMixMatch and SVHN +
MixMatch. Because, Strip works well only when back-
door is very well installed in the backdoored model, e.g.,
for SVHN + FixMatch this is in fact the case where ASR is
almost 100%, but for the other cases ASRs ∈ [80, 90]%.

C.2.5 Anti-backdoor learning (ABL) [25]

Unlike above post-processing defenses, ABL is an in-
processing defense, i.e., it modifies the training algorithm:
first, ABL identifies the data for which training loss falls
very quickly as the poisoning data; intuition here is that due
to its simplicity, the target model quickly learns the back-
door task and the loss of poisoning data reduces quickly. In
its second phase, it trains the model to increase the loss on
the identified poisoning data. ABL completely fails against

SSL, because, SSL training extensively uses strong aug-
mentations, and hence, the unsupervised loss on poisoning
unlabeled data remains almost the same as that on benign
unlabeled data (Figure 13 in Appendix C). Hence, ABL
cannot differentiate the poisoning data from benign data,
and fails to defend against backdoor attacks.
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