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1. Metric Definitions

We present the definitions of the evaluation metrics
in Tab. 1.

2. Relationship with Model Distillation

Model distillation [3] can use the knowledge from
stronger and heavier networks to improve the prediction ac-
curacy of weaker and smaller networks. In contrast, our
proposed 3D distillation utilizes the multi-view 3D informa-
tion aggregated from the predicted depth of multiple video
frames to improve the depth prediction accuracy on reflec-
tive surfaces.

In Tab. 2, we show the results of different distillation
methods on the ScanNet val and test sets [1]. We can ob-
serve that: (i) Both 3D distillation and model distillation can
improve the overall depth prediction accuracy; (ii) Combin-
ing 3D distillation and model distillation can achieve the
best accuracy, which supports that 3D distillation and model
distillation are complementary.

In Tab. 3, we show the results of different distillation
methods on the ScanNet-Reflection val and test sets [1].
We can observe that 3D distillation can significantly im-
prove the accuracy on reflective surfaces but model distil-
lation can not. This supports that our 3D distillation can
better improve the accuracy on reflective surfaces.

3. Mesh Results

To show the superiority of our 3D distillation under 3D
mesh metrics, we use TSDF-fusion [5] to reconstruct the
scenes in the ScanNet val and test set [1] and evaluate the
meshes [7]. In the TSDF-fusion [5] for this evaluation, the
voxel size is 0.05m and the truncation distance is 0.2m, and
we only integrate every 10th frame during fusion to speed
up the reconstruction. We evaluate using the best network
architecture, i.e., MonoViT architecture [8]. The results are
shown in Tab. 4. We can observe: (i) On the val set, 3D
distillation model achieves the best result for Acc, Prec, and
F-score, and achieves the second best result for Recal; (ii)
On the test set, 3D distillation model achieves the best result

for Acc, Prec, and F-score, and achieves the second best
result for Comp and Recal.

4. Sensitivity of the Thresholds
Tab. 5a shows the results of 3D distillation models us-

ing different truncation distance in TSDF-fusion [5] during
3D distillation training. We can see ‘1.0’ is slightly bet-
ter than ‘0.4’ and ‘0.2’. Reconstructed meshes with larger
truncation distance can be more complete, resulting in bet-
ter projected depth for reflective surfaces.

Tab. 5b shows the results of 3D distillation models us-
ing different uncertainty thresholds. We can see ‘0.4’ is
the best. If the threshold is too large, the recall rate of re-
flective surfaces during the uncertainty-guided depth fusion
will be too low; while if the threshold is too small, there
will be many false positives of reflective surfaces during the
uncertainty-guided depth fusion.

5. Predicted Depth Screening
In Tab. 6, we conduct an evaluation on screening the pre-

dicted depth used to reconstruct meshes. We observe that
depth screening can lead to more accurate but sparser pro-
jected depth (Coverage% on uncertain regions: 89 → 82).
Introducing depth screening is a variant of our 3D distilla-
tion training, which may further improve the accuracy of
our 3D distillation model.



Depth Metric Mesh Metric
Abs Rel 1

n

∑
|d− d∗|/d∗ Acc meanp∈P (minp∗∈P∗ ||p− p∗||)

Sq Rel 1
n

∑
|d− d∗|2/d∗ Comp meanp∗∈P∗(minp∈P ||p− p∗||)

RMSE
√

1
n

∑
|d− d∗|2 Prec meanp∈P (minp∗∈P∗ ||p− p∗|| < .05)

RMSE log
√

1
n

∑
| log d− log d∗|2 Recal meanp∗∈P∗(minp∈P ||p− p∗|| < .05)

δ < 1.25i 1
n

∑
(max ( d

d∗ ,
d∗

d ) < 1.25i) F-score 2×Prec×Recal
Prec+Recal

Table 1: Definitions of metrics: n is the number of pixels with both valid predictions and ground truth; d and d∗ are the
predicted and ground truth depth, respectively; p and p∗ are the predicted and ground truth point clouds, respectively.



Self-Supervised Student Network Training Label Distillation ScanNet Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [2]

Monodepth2 [2]

pred. depth None 0.160 0.090 0.365 0.193 0.780 0.941 0.983
Monodepth2 [2] pred. depth + proj. depth 3D 0.157 0.083 0.357 0.190 0.782 0.943 0.985
MonoViT [8] pred. depth Model 0.159 0.092 0.361 0.192 0.788 0.941 0.983
MonoViT [8] pred. depth + proj. depth 3D + Model 0.153 0.080 0.346 0.185 0.791 0.945 0.985

HR-Depth [4]

HR-Depth [4]

pred. depth None 0.159 0.090 0.360 0.190 0.785 0.943 0.984
HR-Depth [4] pred. depth + proj. depth 3D 0.154 0.080 0.349 0.186 0.788 0.945 0.986
MonoViT [8] pred. depth Model 0.155 0.088 0.354 0.187 0.796 0.944 0.984
MonoViT [8] pred. depth + proj. depth 3D + Model 0.149 0.075 0.335 0.180 0.801 0.949 0.987

Self-Supervised Student Network Training Label Distillation ScanNet Test Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [2]

Monodepth2 [2]

pred. depth None 0.184 0.109 0.392 0.210 0.742 0.925 0.976
Monodepth2 [2] pred. depth + proj. depth 3D 0.181 0.105 0.388 0.208 0.746 0.927 0.976
MonoViT [8] pred. depth Model 0.181 0.105 0.382 0.207 0.752 0.928 0.976
MonoViT [8] pred. depth + proj. depth 3D + Model 0.178 0.101 0.378 0.205 0.754 0.929 0.977

HR-Depth [4]

HR-Depth [4]

pred. depth None 0.178 0.102 0.381 0.204 0.752 0.931 0.979
HR-Depth [4] pred. depth + proj. depth 3D 0.176 0.098 0.378 0.202 0.754 0.932 0.979
MonoViT [8] pred. depth Model 0.175 0.099 0.372 0.201 0.763 0.933 0.978
MonoViT [8] pred. depth + proj. depth 3D + Model 0.172 0.095 0.367 0.198 0.766 0.934 0.979

Table 2: Results of different distillation methods on the ScanNet val and test sets [1]. We can observe that both 3D distillation
and model distillation [3] can improve the overall depth accuracy, and combining 3D distillation and model distillation [3]
can achieve the best accuracy. Bold and underline indicate the best and second results of a student network, respectively.

Self-Supervised Student Network Training Label Distillation ScanNet-Reflection Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [2]

Monodepth2 [2]

pred. depth None 0.192 0.188 0.548 0.233 0.764 0.920 0.967
Monodepth2 [2] pred. depth + proj. depth 3D 0.156 0.093 0.442 0.191 0.786 0.943 0.987
MonoViT [8] pred. depth Model 0.196 0.206 0.561 0.241 0.778 0.917 0.961
MonoViT [8] pred. depth + proj. depth 3D + Model 0.147 0.086 0.416 0.182 0.808 0.950 0.987

HR-Depth [4]

HR-Depth [4]

pred. depth None 0.202 0.208 0.565 0.243 0.756 0.914 0.964
HR-Depth [4] pred. depth + proj. depth 3D 0.153 0.090 0.430 0.188 0.789 0.948 0.989
MonoViT [8] pred. depth Model 0.194 0.207 0.562 0.239 0.780 0.919 0.961
MonoViT [8] pred. depth + proj. depth 3D + Model 0.145 0.083 0.407 0.179 0.807 0.953 0.989

Self-Supervised Student Network Training Label Distillation ScanNet-Reflection Test Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [2]

Monodepth2 [2]

pred. depth None 0.179 0.146 0.502 0.218 0.750 0.938 0.980
Monodepth2 [2] pred. depth + proj. depth 3D 0.156 0.096 0.459 0.195 0.766 0.945 0.988
MonoViT [8] pred. depth Model 0.175 0.146 0.490 0.216 0.771 0.935 0.976
MonoViT [8] pred. depth + proj. depth 3D + Model 0.155 0.092 0.435 0.190 0.778 0.948 0.990

HR-Depth [4]

HR-Depth [4]

pred. depth None 0.175 0.145 0.492 0.215 0.757 0.936 0.982
HR-Depth [4] pred. depth + proj. depth 3D 0.152 0.089 0.451 0.190 0.771 0.956 0.990
MonoViT [8] pred. depth Model 0.175 0.148 0.485 0.215 0.771 0.940 0.978
MonoViT [8] pred. depth + proj. depth 3D + Model 0.152 0.090 0.435 0.188 0.789 0.950 0.988

Table 3: Results of different distillation methods on the ScanNet-Reflection val and test sets [1]. 3D distillation can signifi-
cantly improve the accuracy on reflective surfaces, but model distillation [3] can not.



Architecture Model ScanNet Val Set
Acc ↓ Comp ↓ Prec ↑ Recal ↑ F-score ↑

MonoViT [8]
Self-Supervised [2] 0.214 0.096 0.253 0.403 0.307
Self-Teaching [6] 0.203 0.098 0.270 0.396 0.317

3D Distillation (ours) 0.186 0.099 0.284 0.397 0.328

Architecture Model ScanNet Test Set
Acc ↓ Comp ↓ Prec ↑ Recal ↑ F-score ↑

MonoViT [8]
Self-Supervised [2] 0.256 0.126 0.203 0.329 0.246
Self-Teaching [6] 0.249 0.130 0.214 0.324 0.253

3D Distillation (ours) 0.235 0.128 0.224 0.326 0.260

Table 4: Mesh results on the ScanNet val and test set [1]. ‘Self-Supervised’ indicates that the model is trained with the
photometric loss [2]. ‘Self-Teaching’ indicates that the model is supervised by the predicted depth from self-supervised
models and trained with the depth loss in the main paper. ‘3D Distillation’ indicates that the model is supervised by the
fusion of the predicted depth and project depth and trained with the depth loss in the main paper. Bold and underline indicate
the best and second results of an architecture, respectively.

Truncation Distance ScanNet Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

0.2 0.159 0.085 0.358 0.191 0.780 0.942 0.984
0.4 0.158 0.083 0.357 0.190 0.782 0.943 0.985
1.0 (ours) 0.157 0.083 0.357 0.190 0.782 0.943 0.985

(a) Experiments with different truncation distance in TSDF-fusion [5].

Uncertainty Threshold ScanNet Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

0.2 0.156 0.083 0.364 0.191 0.782 0.942 0.984
0.4 (ours) 0.157 0.083 0.357 0.190 0.782 0.943 0.985
0.6 0.158 0.085 0.358 0.191 0.781 0.942 0.984
0.8 0.159 0.087 0.361 0.192 0.780 0.942 0.984

(b) Experiments with different uncertainty thresholds, i.e., αuncer.

Table 5: Experiments on the ScanNet val set [1] using the network architecture of Monodepth2 [2].

Depth Source ScanNet-Reflection Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Coverage% ↑

Self-Supervised Model 0.206 0.227 0.584 0.246 0.750 0.912 0.961 100
proj. depth w/o uncer. filt. 0.197 0.172 0.595 0.306 0.677 0.863 0.940 89
proj. depth w uncer. filt. 0.186 0.150 0.548 0.288 0.698 0.875 0.949 82
3D Distillation Model 0.156 0.093 0.442 0.191 0.786 0.943 0.987 100

Table 6: Projected depth quality with and without uncertainty-driven filtering, using Monodepth2 architecture [2].
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