
1. Implementation Details
This section primarily introduces the selection of distil-

lation layers and the implementation of the differentiable
counter.

1.1. Fine-tuning Knowledge Distillation Layers

As mentioned in the previous section 5.1, we select cer-
tain outputs of the intermediate layers for distillation during
the training and fine-tuning process. Specifically, we choose
the output of each block of the models as knowledge dis-
tillation layers, taking into account both the stability of the
model’s convergence and its final compression performance
during our experiments.

1.2. Differentiable Counter

In the process of implementing the differentiable
counter, the weights ŵ are first sorted, and then binary
search is used to determine the position of the query value
x in the sorted weights. By using relaxation, the forward
propagation value can be obtained. In the process of calcu-
lating gradients during backward propagation, it is impor-
tant to take note of the accumulation of associated gradi-
ents. In practice, weight sampling is used to count the fre-
quencies of values when the number of parameters in a layer
exceeds a certain amount (such as 2 to the power of 14) due
to the relatively slow traversal of counts. We have observed
that the utilization of sampling leads to a substantial im-
provement in computational efficiency while maintaining a
satisfactory level of accuracy. To this end, we offer two im-
plementations: one in C++ and the other in CUDA [2].

2. Additional Experimental Results
In this section, we present additional experimental re-

sults and analyses that were not included in the main text.
These results include the analysis of compression ratio al-
locations for layers in more networks, ablation experiments
on encoding algorithms, calibration dataset size, and weight
fine-tuning, as well as experiments on a novel network ar-
chitecture.

2.1. Compression Ratio Allocation for Layers

In this section, we will present more distributions of bit
width and sparsity ratio for the compressed models, which
were not shown in the experiment section. We have selected
one representative model each from MobileNet, RegNet,
and MNasNet. Since these models exhibit varying levels
of accuracy at different compression ratios, we have chosen
the highest compression ratios possible while maintaining
an acceptable level of accuracy.

MobileNetV2. Figure 1 depicts the distribution of bit width
and sparsity ratio for MobileNetV2 at a 10× compression

Entropy Loss Huffman Coding Range Coding

4517.31KB 4588.33KB 4527.30KB
3719.25KB 3799.03KB 3721.24KB
3033.46KB 3130.71KB 3040.09KB
2496.27KB 2669.75KB 2508.25KB
2277.14KB 2500.24KB 2288.99KB

Table 1. Effect of different coding methods on ResNet-18.

ratio. Our observations indicate that the earlier layers of the
network generally have higher bit width values, while the
later layers have lower bit width values. Additionally, spar-
sity is rarely observed in the earlier layers, but alternates
between high and low ratios in the later layers. Remark-
ably, the final layer, which is a classifier, exhibits the high-
est sparsity ratio across the entire network, which contrasts
sharply with the characteristics of other models.

RegNet-600m. Figure 2 displays the distribution of bit
width and sparsity ratio for RegNet-600m at a 15× com-
pression ratio. Our observations show that the compres-
sion ratio is more pronounced in the later layers of RegNet-
600m, with lower bit width values and higher sparsity ra-
tios. Conversely, the earlier layers exhibit lower compres-
sion ratios with lower sparsity ratios and higher bit width
values. Meanwhile, the compression ratio of the classifier
layer remains relatively low.

MNasNet. Figure 3 presents the result of MNasNet at a
compression ratio of 12×. It is noteworthy that the layers
with lower bit width values are located towards the end of
the network, whereas the layers with higher bit width val-
ues are situated towards the front. This discrepancy is more
pronounced compared to other networks.

2.2. Additional Ablation Study

In this section, we will provide some additional ablation
studies, including the choice of lossless compression meth-
ods, the impact of calibrating dataset length, and the effect
of weight fine-tuning.

Choice of lossless compression. We demonstrate the im-
pact of using different encoding algorithms on the compres-
sion results, mainly comparing Huffman coding with range
coding. Table 1 presents the theoretical compression val-
ues calculated using the entropy regularization term under
different target compression ratios for ResNet-18, the com-
pressed model sizes after using Huffman coding, and the
compressed model size after using range coding. It is appar-
ent that the results of range coding are closer to the theoret-
ical compression values, especially when the compression
ratios are high. In such scenarios, the difference between
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Figure 1. The distribution of bit width and sparsity ratio of MobileNetV2 at a compression ratio of 10×.
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Figure 2. The distribution of bit width and sparsity ratio of RegNet-600m at a compression ratio of 15×.

the two coding methods is significant, and the advantages
of range coding are more pronounced.

The reason lies in the fact that Huffman coding is a sym-
bol coding method that uses only integer bits for encoding,
which imposes certain limitations on the compressed data.
In contrast, range coding does not suffer from such limi-
tations and, as a result, offers more potential for achieving
higher compression ratios. This is because range coding
uses fractional bits for encoding, allowing for a more pre-
cise representation of the data and reducing the number of
bits needed to represent the same information.

Choice of calibration dataset size. In Table 2, we observe
that in the ImageNet-1k classification task, when the num-
ber of images in the calibration dataset is less than 768, the
model’s accuracy drop is more severe. However, when the
number of images is greater than 768, the model’s perfor-

Length 2000 1000 768 512 256

Accuracy/% 70.78 70.79 70.75 69.79 67.93

Table 2. The results for ResNet-18 at 12× compression ratio with
different calibration sizes.

mance does not show significant improvement. Neverthe-
less, using more data for calibration would have negative
impacts on calibration time and data acquisition. Therefore,
we have opted to use 1000 images as the calibration dataset,
striking a balance between different aspects.

Effect of weight fine-tuning. We evaluate the performance
of our unified compression method without weight fine-
tuning, as shown in Table Table 3. Our results demonstrate
that our method can maintain a compression ratio of 10×
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Figure 3. The distribution of bit width and sparsity ratio of MNasNet at a compression ratio of 12×.

Model CR Top1-acc

ResNet-18 10.05× 70.47%
ResNet-50 10.04× 76.22%
MobileNetV2 9.864× 71.46%
RegNet-3200m 9.935× 78.00%
RegNet-600m 9.903× 72.82%
MNasNet 9.980× 75.78%

Table 3. The results without weight fine-tuning.

Target CR CR Top-1 acc

- 1.00× 85.09%
6× 6.67× 84.97%
8× 8.05× 84.83%
10× 10.05× 84.36%
12× 12.01× 83.44%
14× 14.02× 81.86%

Table 4. ViT compression results.

with minimal accuracy drop, solely relying on the unified
transformation T (·). This approach is still superior to ex-
isting state-of-the-art methods, highlighting the rationality
and robustness of our proposed method.

2.3. Performance on Vision Transformer

We also validated our method on the popular Vision
Transformer network [1]. Specifically, we conduct classifi-
cation experiments on the ViT-base-patch16 using the same
settings as the previous experiments. However, considering
the computational complexity of the model and the need for
efficiency, we set the batch size to 16 and train for 3 epochs,
with 300 iterations for training transformation parameters

per epoch and 1000 iterations for fine-tuning weights. As
shown in Table Table 4, our method still achieves good per-
formance on this network.
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