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1. Explanation of Details
1.1. Formulation of Evaluation Metrics

We report average incremental accuracy and average for-

getting in the main text. The average incremental accuracy

AK calculates the average accuracy of all K incremental

phases (including the initial phase). For any phase k, the

average accuracy over all seen classes is ak. The average

incremental accuracy can be expressed as:

AK =
1

K + 1

K∑

k=0

ak. (1)

At phase k, the forgetting of task j is quantified as:

fk
j = max

l∈0,...,k−1
(al,j − ak,j) , ∀j < k, (2)

where an,m is the accuracy of task n after training the train-

ing of phase m. The average forgetting of the entire incre-

mental learning process can be formulated as follows:

FK =
1

K

K∑

k=1

1

k − 1

k−1∑

j=0

fk
j . (3)

1.2. Standard Deviation of the Average Incremental
Accuracy.

The results of the average incremental accuracy (i.e., Ta-

ble 1 in the main text) are obtained by averaging three repli-

cate experiments, and we set a different random seed for

each run. To illustrate the stability of our method, we report

the standard deviation of these three results. As shown in

Tab. 1, the random seed has little impact on the results of

our approach.

1.3. Detailed Values of the Accuracy Curves

For comparison in subsequent work, we show the de-

tailed values of the accuracy curves (i.e., Figure 4 in the

main text) in Tab. 2, Tab. 3 and Tab. 4.

1.4. Illustration of Datasets

CIFAR-100 [3] contains 60,000 images of 32×32 size,

with a total of 100 classes, each class consisting of 500

training images and 100 test images. Tiny-ImageNet [4]

consists of 200 classes, with 500 training photos, 50 vali-

dation images, and 50 test images per class, where the im-

Table 1. Quantitative comparisons of the average incremental accuracy (%) with other methods at different task number settings on CIFAR-

100, TinyImageNet, and ImageNet-Subset. The red footnotes in the last row represent the standard deviation on three different runs.

CIFAR-100 TinyImageNet ImageNet-Subset
Methods

5 phases 10 phases 20 phases 5 phases 10 phases 20 phases 10 phases

MUC [6] 49.42 30.19 21.27 32.58 26.61 21.95 35.07

SDC [8] 56.77 57.00 58.90 — — — 61.12

PASS [9] 63.47 61.84 58.09 49.55 47.29 42.07 61.80

SSRE [10] 65.88 65.04 61.70 50.39 48.93 48.17 67.69

Ours 70.02±0.22 68.86±0.43 65.86±0.35 53.32±0.20 52.61±0.02 49.83±0.13 68.98±0.15

Table 2. Detailed values of classification accuracy under the setting of 5 phases.

Phase
Dataset

0 1 2 3 4 5

CIFAR-100 [3] 81.90 74.85 70.34 66.81 64.71 61.55

TinyImageNet [4] 63.06 55.91 54.01 51.79 48.83 46.36



Table 3. Detailed values of classification accuracy under the setting of 10 phases.

Phase
Datasets

0 1 2 3 4 5 6 7 8 9 10

CIFAR-100 [3] 81.90 76.89 73.65 71.25 70.13 67.20 65.86 64.11 63.57 62.49 60.41

TinyImageNet [4] 63.06 57.65 54.68 52.88 53.19 51.72 50.75 49.69 48.23 46.69 45.16

ImageNet-Subset [2] 81.12 78.47 74.47 71.66 69.34 68.21 66.05 64.45 62.80 60.97 61.30

Table 4. Detailed values of classification accuracy under the setting of 20 phases.

Phase
Datasets

0 1 2 3 4 5 6 7 8 9

CIFAR-100 [3] 83.25 79.44 76.39 73.76 72.67 71.60 69.29 68.75 67.37 65.10

TinyImageNet [4] 63.06 58.17 57.87 56.28 55.03 53.31 52.57 52.24 51.27 50.03

Phase
Datasets

10 11 12 13 14 15 16 17 18 19 20

CIFAR-100 [3] 64.93 64.09 61.68 61.39 58.55 58.31 58.76 57.89 57.26 56.53 56.20

TinyImageNet [4] 49.60 47.99 48.10 46.33 46.52 45.09 44.53 43.52 42.69 41.79 40.58

age size is 64×64. It offers more phases and incremen-

tal classes for comparing the sensitivities of various ap-

proaches. ImageNet-Subset is a subset of 100 classes ran-

domly extracted from ImageNet-1k [2] (random seed 1993).

It has about 1300 training images and 50 test images per

class. The image size of ImageNet-Subset is 256×256,

which is much larger than those of the other two datasets.

For the incremental configuration of classes for all datasets,

please refer entirely to [9].

2. Analysis

2.1. Comparison of Weight in the FC Layer.

For further analysis of the role of our asymmetric knowl-

edge aggregation (AKA), we present the norms of the

weight vectors after all incremental phases are completed

on CIFAR-100 (5 phases) in Fig. 1. As shown in Fig. 1 (a),

is clear that the norms of the weight vectors vary greatly be-

tween classes in the baseline model. In Fig. 1 (b) and (c),

the number of classes was increased to 400 by label aug-

mentation. To demonstrate the role of self-supervised label

augmentation, we take out the norms of the weights corre-

sponding to the non-augmented classes (the part used for

testing without AKA) to plot Fig. 1 (c). As we analyzed

in the introduction section of the main text, vanilla SLA can

make the classifier more balanced. However, there are many

invalid parts in the weights of past classes. For comparison,

we show the norms of the weight vectors in the refined clas-

sifier GO obtained after AKA in Fig. 1 (d). The classifier

learned with AKA has a minor variance of the norms, and

its norms of the new classes are improved. Experiments

demonstrate that AKA discards invalid weights to learn a

more refined classifier and increases the attention of the new

task.
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Figure 1. Norms of the weight vectors in the fully connected (FC)

layer after learning all classes incrementally. (a) Weight norms

of the classifier in the baseline model. (b) Weight norms of the

classifier (the part used for testing w/o AKA) trained with SLA.

(c) Weight norms of the non-augmented classes in the classifier

trained with SLA. (d) Weight norms of the refined classifier GO

obtained by AKA. The ”var” denotes the variance of all norms.

2.2. Ablation Study on Average Forgetting

As a supplement to section 4.3 of the main text, we

present the ablation experiments with average forgetting as

an evaluation metric. As shown in Tab. 5, prototype rem-

iniscence (PR) significantly alleviates catastrophic forget-

ting in all cases. Self-supervised label augmentation (SLA)

increases this metric to some extent by improving general-

izability. Asymmetric knowledge aggregation (AKA) sub-

stantially improves the performance of the model on the

new task, i.e., increases al,j in Equation Eq. (2) (with lit-

tle impact on ak,j), which causes a rise in the forgetting

metric, but is harmless for the overall performance.



Table 5. Ablation study (in average forgetting) of our method on CIFAR-100 and TinyImageNet datasets.

Components CIFAR-100 TinyImageNet

PR SLA AKA 5 phases 10 phases 20 phases 5 phases 10 phases 20 phases

37.35 39.00 44.29 27.82 38.75 47.93

� 10.39 11.71 15.85 6.98 11.41 19.96

� 31.39 31.48 33.21 23.37 29.84 37.78

� � 7.18 6.42 10.30 4.57 5.10 9.05
� � � 12.59 14.65 17.39 11.84 13.95 18.51

Table 6. Quantitative comparisons of the average incremental

accuracy (%) with other prototype augmentation approaches on

CIFAR-100 dataset.

CIFAR-100
Methods

5 phases 10 phases 20 phases

Baseline 56.27 51.02 43.98

Over-sample [1] 56.45 51.26 44.72

Gaussian Noise [5] 60.06 55.44 47.09

PR 66.21 63.80 57.31

Table 7. Results of SSRE [10] (in average incremental accuracy)

with self-supervised label augmentation on CIFAR-100 dataset.

CIFAR-100
Methods

5 phases 10 phases 20 phases

SSRE 65.88 65.04 61.70

SSRE+SLA 66.15 65.31 61.72

2.3. Comparison with Other Prototype Augmenta-
tion Approaches

To compare the different approaches fairly, we apply dif-

ferent augmentations on the baseline model (only use KD)

for evaluation. The results on CIFAR-100 are summarized

in Tab. 6. Over-sample is randomly sampling the same num-

ber of prototypes as the batch size as old class features to

train the classifier. For the Gaussian Noise, following PASS

[9], it is denoted as e∗r, where e ∼ N (0, 1). r is computed

in the first task as: r2 = 1
K1∗D

∑K1

k=1 Tr (Σ1,k), where K1

is the number of classes of the first task, D is the dimen-

sion of the deep feature space, Σ1,k is the covariance matrix

for the features from class k, and the Tr operation computes

the trace of a matrix. As can be seen, our method has a

clear advantage, and the gap grows further as the difficulty

increases (the number of incremental phases increases).

2.4. Additional Results of Adding Self-supervised
Label Augmentation to SSRE

Self-supervised label augmentation has been demon-

strated to be beneficial for NECIL in our approach and

PASS [9]. To make a fair comparison with the SOTA

method, we add SLA to SSRE [10] and conduct experi-

ments. As reported in Tab. 7, SLA has little effect on SSRE.

It’s because in our method and PASS, the feature extractor

has a fixed structure. Past and current knowledge is stored in

the same structure, hence learning a generalizable and trans-

Table 8. Quantitative comparisons of the final accuracy (%) under

different settings (i.e., 5, 10 and 20 phases). B0 indicates the num-

ber of base classes is zero, where all 100 classes are evenly divided

into 5, 10, and 20 phases.

CIFAR-100 (B0)
Methods

5 phases 10 phases 20 phases

ABD [7] 43.90 33.70 20.00

SSRE [10] 44.60 34.39 23.12

Ours 51.73 39.45 33.51

Table 9. Quantitative comparisons of the average incremental ac-

curacy (%) under different settings (i.e., 5, 10 and 20 phases). B50

indicates the number of base classes is 50 (40 for the 20 phases

setting), where the initial model is trained on the base classes, and

the remaining classes are divided into 5, 10, and 20 phases for sub-

sequent incremental processes. The B50 setting corresponds to the

experimental configuration described in the main text.

CIFAR-100 (B50)
Methods

5 phases 10 phases 20 phases

ABD [7] 63.85 62.46 57.40

SSRE [10] 65.88 65.04 61.70

Ours 70.02 68.86 65.86

ferable feature extractor reduces the hindrance of learning

new tasks and the forgetting of old tasks. However, SSRE

has a dynamic structure that includes a main branch and a

side branch. When learning a new task, it only optimizes the

side branch and merges it into the main branch after each

phase of learning is completed. On the one hand, the main

branch does not require generalization to new tasks because

it does not actively learn new knowledge but relies on the

integration of the side branch. On the other hand, the side

branch is reset after learning a task, and thus the general-

ization ability to unknown tasks is inconsequential. There-

fore, the improvement of generalization capability brought

by SLA is of little help to SSRE.

2.5. Results with Different NECIL Settings

To demonstrate the superiority of our suggested ap-

proach, we perform more comparison tests on CIFAR-100

with different NECIL settings. Smith et al. [7] proposes a

data-free CIL setting, which is analogous to that of NECIL

[9]. The setting adopted in [7] divides all 100 classes into

5 phases, 10 phases and 20 phases and is called B0. In

contrast, the setting in [9] select the first 50 classes (40
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Figure 2. Visualization of the saved and real prototypes.

Table 10. Quantitative comparisons of the average incremental ac-

curacy (%) on ImageNet-1K [2].

Methods PASS SSRE Ours

ImageNet-1K (5 phases) 49.94 49.88 53.87
ImageNet-1K (10 phases) 46.94 47.89 50.22

classes for the 20 phases setting, which is for the subse-

quent classes to be evenly divided) as the 1-st phase and

evenly split the remaining classes for K − 1 phases, which

is called B50. Following [10], we report the final accuracy

under the B0 setting, i.e., the average classification accu-

racy of the model for all seen classes after completing all

phases of training. We report the average incremental accu-

racy under the B50 setting. Thanks to the previous work of

Zhu et al. [10], we can compare our method with the SOTA

data-free CIL methods [7] in both settings, respectively. As

reported in Tab. 8 and Tab. 9, our method achieves superior

performance under both the B0 and B50 settings, which in-

dicates that the proposed prototype reminiscence and aug-

mented asymmetric knowledge aggregation are effective for

solving the NECIL problem.

2.6. Feature Drift

We visualize the saved prototypes and the real prototypes

(computed with the current model and the old task data after

finishing the learning of new task) in the Fig. 2. Prototypes

drift to a certain extent but are acceptable. In addition, we

show the real distribution of old class features. The com-

parison shows that our method can generate approximate

distributions at the class boundaries.

2.7. Comparison on large-scale datasets

To further illustrate the superiority of our method, we

conducted experiments on the large-scale ImageNet-1K

dataset. As shown in Tab. 10, compared to the two SOTA

methods PASS [9] and SSRE [10] (as both original papers

were not experimented on ImageNet-1K, the results were

reproduced from open source code), our approach makes a

notable improvement.

Figure 3. Influence of the threshold η in prototype reminiscence.

2.8. Impact of the Threshold on TinyImageNet

In experiments on all datasets, we use a threshold of 0.6

and get promising results. As a supplement to Figure 5 in

the main text, the impact of threshold η on TinyImageNet

is shown in Fig. 3. It exhibits a similar trend as on CIFAR-

100. Fine-tuning the threshold may achieve better results.
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