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We provide the following supplementary materials:
A Background design choice
B Effectiveness of background representation
C Ablation of the losses
D Implementation details
E User study
F Evaluation protocols
G Detailed qualitative comparison
H More comparison with EG3D
I Detailed multi-view comparison
J Uncurated samples

A. Background design choice

This section explains the rationale why our background
has a spherical shape rather than anything else. Notably, our
goal is not to accurately model the geometry of the back-
ground, but rather to ensure that the integrity of the fore-
ground of interest is not compromised. To ensure that the
background is taken into consideration from all possible an-
gles, it is imperative that the background encompasses the
camera sphere. For instance, a planar background fails to
cover the background when the camera rotates beyond 90◦

from its normal vector.
Even if the view frustum can account for the entire back-

ground, any abrupt changes in gradient or inconsistencies in
distances from the camera can engender unstable learning.
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Figure S1: Background should be modeled spherical
rather than cubic. While the edges of the cube are reflected
in the rendered images (Initial), the sphere has no such ar-
tifacts in the rendered images. While the cubic background
fails to produce plausible images, our spherical background
produces sensible backgrounds (Trained).
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Figure S2: Effectiveness of our spherical background
on single scene overfitting scenario. The sole foreground
rendering and depth map demonstrates our spherical back-
ground is beneficial for capturing foreground geometry

To analyze the background effect, we trained BallGAN-S
on the CompCars dataset with various complex background
representations that occupy a significant portion of the im-
age, using only different representations of the background
such as sphere and cube, in Figure S1. The cube background
does not converge. Therefore, the sphere background is the
only reasonable choice for background representation.

B. Effectiveness of background representation
In this section, we demonstrate the effect of our spher-

ical background representation, which enhances the focus
on the foreground. We verify the efficacy of our background
representation through a single-scene overfitting (SSO) ex-
periment, in which we overfit a 3D model to a single scene
captured by multi-view images, namely lf-basket [49]. We
use the vanilla NeRF [26] for the foreground, and keep
the spherical background representation. In other words,
NeRF++ and Ours differ only in the background represen-
tation.

As shown in Figure S2, NeRF++ does not clearly dis-
tinguish between foreground and background, and the esti-
mated depth is erroneous, e.g., the table has a lower depth
at the deepest end. In contrast, our approach clearly sepa-



configuration
Lfg Lbg FID

stage 1

- - 7.87
✓ - 6.82
- ✓ 7.88
✓ ✓ 6.13

Table S1: Ablation study on regularization. This ablation
study is conducted with batch size 16 due to the resource
shortage. FIDs do not match the main results.

rates foreground and background and better estimates fore-
ground depth. Thus, our design demonstrates effectiveness
in focusing resources on learning foreground 3D geometry.

C. Ablation of the losses
We conduct ablation studies to evaluate the impact of

each regularization on image quality. Table S1 shows the ef-
fects of our foreground and background regularization. Ap-
plying the foreground density loss Lfg improves FID. The
background transmittance regularization Lbg not only fa-
cilitates a clearer separation between foreground and back-
ground but also enhances FID score.

D. Implementation details

BallGAN Our implementation mostly follows the official
implementation of EG3D1 including training hyperparam-
eters, dual discrimination, pose-conditioning on discrimi-
nator, two-stage training, equalized learning rates [19], a
mini-batch standard deviation layer at the end of the dis-
criminator [19], exponential moving average of the genera-
tor weights, a non-saturating logistic loss [13], and R1 reg-
ularization [25] with γ = 1. We also use the same camera
intrinsic parameters and FFHQ preprocessing from EG3D.

The weights of the foreground density output layer are
initialized to zero to guarantee the contribution of the back-
ground at the beginning of the training. Figure S3 illustrates
the architecture for the background representation. A five-
layer 1 × 1 convolutional network maps the positional en-
coding ζ of a background point to a feature vector. The style
code from an eight-layer MLP, i.e., the mapping network,
modulates the weights of the convolutions gwbg . The back-
ground representation mapping network shares the same de-
sign as the mapping network in StyleGAN2 [22]. The num-
ber of channels of the intermediate features are in Table S2.
The last layer has a sigmoid clamping from MipNeRF [2]
as in the foreground neural render of EG3D. We use the po-
sitional encoding of L = 10 on the background’s 2D spher-
ical coordinates. View direction is not considered for our
background representation.

1https://github.com/NVlabs/eg3d
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Figure S3: Background architecture

input channel output channel
PE 2 40
g1
wbg

40 64
g2
wbg

64 64
g3
wbg

64 64
g4
wbg

64 64
g5
wbg

64 32

Table S2: Detail of background network. PE means posi-
tional encoding ζ, not a layer.

On FFHQ, we schedule the coefficient of the foreground
density loss λfg to exponentially grow from 0 to 0.25 and the
coefficient of the background transmittance regularization
λbg to exponentially grow from 0 to 1 in the first stage. We
set the coefficients λfg = 1 and λbg = 0.5 in the second
stage.

For AFHQv2-Cats, we start from the weights pretrained
on FFHQ for the first step and fine-tune them on AFHQv2-
Cats as done in EG3D. We set λfg = λbg = 0 to let the
foreground better capture the fine details such as whiskers.
BallGAN-S BallGAN-S is a variant using StyleNeRF as
a baseline instead of EG3D. We add the same background
network on top of the official StyleNeRF implementation2.
We set λfg = 0.25 and λbg = 0.
Competitors In the comparison experiments, we reported
the best FIDs among the available sources: reported, official
checkpoints, and official training code. We used the official
training codes as-is to reproduce FIDs if the official reposi-
tory does not provide the checkpoints3456.

StyleNeRF, StyleSDF, EpiGRAF, and VolumeGAN do
not provide training guidelines for AFHQv2-cats [8]. For
StyleNeRF and StyleSDF, we adopted the same training set-
tings as used for AFHQv2 training, given that AFHQv2-cats
constitutes a subset of AFHQv2. For VolumeGAN, we fol-
lowed the same settings as Cats [51] in pi-gan, including

2https://github.com/facebookresearch/StyleNeRF
3https://github.com/genforce/volumegan
4https://github.com/universome/epigraf
5https://github.com/royorel/StyleSDF
6https://github.com/AustinXY/GIRAFFEHD



FFHQ 5122 FFHQ other res.
reported reproduced official ckpt. reported

GRAM - - - (2562) 29.8
MVCGAN 13.4 - 21.3
VolumeGAN - 15.7 - (2562) 9.1
StyleSDF - 19.5 - (2562) 11.5
EpiGRAF 9.9 - - (2562) 9.7
EG3D 4.7 4.7 -
GIRAFFE-HD - 6.4 - (10242) 10.13
StyleNeRF 13.2 - 10.5
Ours 5.64

Table S3: FIDs of competitors from various sources. We
report the best FID among the reported, reproduced and of-
ficial checkpoint for each model with 5122 resolutions in
Table 3.
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Figure S4: User study.

FOV, ray’s near/far distances, and camera pose sampling
distribution. For EpiGRAF, we employed the landmark de-
tector7 used in EG3D to label camera poses, while follow-
ing the guidelines from the EpiGRAF’s official repository
for other training settings. The FOV and ray’s near/far dis-
tances used in EpiGRAF are almost identical to those in
pi-gan.

For GIRAFFE-HD on CompCars, we applied transfer-
learning from the official checkpoint for 2562 resolution
to 5122 resolution following the authors’ guidelines. We
trained the model until it achieved the FID reported in the
original paper. Table S3 provides the FIDs we obtained from
various sources.

E. User study
We asked 57 participants to choose the best model in

terms of foreground separation and consistency. We pre-
pared the following questionnaire for our user study in Fig-
ure S4. We randomly sampled ten scenes from each method
and rendered foregrounds in seven different viewing direc-
tions; the entire samples are shown in §F. Then we asked 57

7https://github.com/kairess/cat hipsterizer

participants to answer two questions: (1:Foreground Sep-
aration) Which set of foreground fully includes the whole
person (or cat) and excludes the background? (2 : Fore-
ground Consistency) Which set of foregrounds is consistent
across different views?

Figure S4 shows that ours outperforms competitors by a
large margin with respect to both criteria. See §F for how
we prepared images for the user study.

F. Evaluation protocols
We mostly follow the evaluation protocols of EG3D[5].

Below enumerates the protocols.
Real image inversion We use the same configuration of
EG3D for pivotal tuning inversion [33].
ID ID measures the cosine similarity of the ArcFace em-
bedding [9] between different views of the same scene. For
each method, we generate 1000 random scenes in pairs of
random poses from the training dataset pose distribution.
Then we compute the average.
Pose Pose computes the difference between the intended
(input) pose and the synthesized pose, implying how accu-
rately the input poses are reflected in the rendered poses.
We sample 1000 latent codes and render them in varying
yaws and estimate the resulting yaws with a pre-trained face
reconstruction model [10]. Instead of random yaws, we re-
move the stochasticity of the evaluation by specifying nine
yaw angles evenly separated in [-0.9rad, 0.9rad]. ±0.9rad
covers the [0.3, 99.7] percentile of the training dataset’s yaw
distribution. We report a mean absolute error (L1) instead of
L2 distance to equally capture the error near zero.
Depth Depth measures the difference between the under-
lying 3D geometry (volume-rendered depth) and the ren-
dered image. We consider depth maps of rendered images in
frontal views of 1000 samples estimated by a pre-trained 3D
face reconstruction model [10] as pseudo ground truth. The
depth maps are normalized to compute their mean squared
error.
Foreground separation We describe the procedure to ob-
tain the foreground image used in §4.1. Although our goal
is to compare the separation of foreground and background
in the 3D space, it is prohibitive to visualize the separa-
tion in 3D space on paper or screen. Therefore, we visu-
alize by separately synthesizing the foreground scene for
each method. Note that GIRAFFE-HD produces extra al-
pha masks in 2D space. We visualize their foreground part
with their alpha masks to demonstrate their best perfor-
mance. Their foreground densities are only in the central
region of the image canvas, and their aggregated densities
do not match the shape of the salient object. For StyleN-
eRF, the foreground densities along the ray do not sum to
one, i.e., the foreground is semi-transparent. Therefore, we
manually searched for a density threshold that best divides



St
yl

eN
eR

F

Total Only FG rendering Final result

G
IR

A
FF

E-
H

D
O

ur
s

Figure S5: Foreground separation examples. The densi-
ties along a ray do not sum to one in GIRAFFE-HD and
StyleNeRF. Hence, we apply postprocessing to compare
their full potential for separation. Ours does not require
such postprocessing. The rightmost column shows zoomed-
in images of red box regions for detailed comparison.

w
ith

 N
eR

F+
+

w
ith

 O
ur

s

(a) Comparison on FFHQ

w
ith

 N
eR

F+
+

w
ith

 O
ur

s

Total FG Total FG

(b) Comparison on Cats
Total FG Total FG

Figure S6: Comparison of foreground and background
separation with EpiGRAF backbone NeRF++ BG strug-
gles on hair, shoulder, and cat. Our BG excels in all cases.

the foreground region for each image. Ours do not require
such workarounds as the foreground densities aggregate to
one along the rays well on the foreground regions. Figure
S5 provides examples.

G. Detailed qualitative comparison

We only visualize the foreground meshes in Figure 8,
Figure 10, Figure S7, and Figure 6 for methods that sepa-
rately model on foreground and background. Figure 1, Fig-

(a) EG3D

(b) Ours

Figure S7: 3D geometry comparison between EG3D and
BallGAN

ure 2 and Figure 9 show the full 3D scene, including both
foreground and background. As EG3D does not separate
foreground and background, the full 3D geometry is visual-
ized on all mesh figures.

However, we only visualize the foreground mesh of
StyleNeRF in Figure 9 as we discover that the background
densities of StyleNeRF are close to zero, thus negligible.
Yet, the background appears on rendered images of StyleN-
eRF as the last sample on the background ray is set to have
an alpha value of 1 before volume rendering, i.e., the alpha
value for the last sample is tweaked to 1 regardless of the
actual density produced by the background NeRF.

Despite the sole visualization of foreground mesh for
StyleNeRF in Figure 9, densities accountable for back-
ground is noticeable on StyleNeRF’s mesh for AFHQv2-
Cats. This shows the case of the background being erro-
neously modeled through the foreground.

EpiGRAF employs NeRF++’s inverse sphere parameter-
ization for the background, the same as StyleNeRF. Figure
S6 shows a comparison between our background represen-
tation and NeRF++ when using EpiGRAF as the backbone.
The term ”with NeRF++” refers to the original EpiGRAF,
while ”with Ours” indicates the model where our sphere
background representation is applied to EpiGRAF’s fore-
ground representation. Except for the background represen-
tation, all settings remain the same and adhere to the guide-
lines provided in the official repository.

In FFHQ, EpiGRAF with Ours separates the FG cleaner.
On the Cats [51] dataset, which contains a significant
amount of fine-grained details, EpiGRAF with NeRF++
fails to separate the FG and BG, whereas EpiGRAF with
Ours shows clear separation.



Generated image Threshold=10 Threshold =70 Threshold =100
(a) 3D comparison of density threshold for EG3D

(b) 3D comparison of cutting mesh for EG3D
cutting from the backside of mesh

Figure S8: Difficulty of separating foreground in EG3D
(a) The background cannot be removed by thresholding
density, i.e., the foreground is cut off before the background
is fully removed. (b) As the background wall has a con-
cave shape and is not always behind the foreground, clip-
ping with depth tends to carve out the foreground before
full background removal.

H. More comparison with EG3D

EG3D does not separately model foreground and back-
ground. Figure S7 highlights the drawback of this represen-
tation for learning 3D scenes. The ears and hair in 3D space
are attached to the background. Some parts of the hair are
flat and lack curls. In contrast, ours separates the hair from
the background and correctly models the 3D geometry of
the hair that matches the 2D observation.

Figure S8 shows that foreground separation is not
straightforward in EG3D’s 3D space. Thresholding the den-
sity or carving the mesh from the back does not correctly
separate the foreground, and damages the facial/hair regions
first. This demonstrates that the foreground and background
must be perfectly separated at the representation level.

I. Detailed multi-view comparison

Figure S9a and Figure S9b provide qualitative compar-
isons with varying camera poses. As FFHQ dataset mainly

consists of frontal views, the competitors produce artifacts
or show multi-view inconsistency. On the other hand, Ball-
GAN produces images that are multi-view consistent and
free from artifacts even in extreme camera poses.

J. Uncurated samples
Figure S10 provides uncurated samples of our method.
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(b) Multi-view comparison with varying yaws

Figure S9: Multi-view comparison in various poses on FFHQ. Percentile for camera pitch and yaw in training distribution
are shown on the left side of a and below for b.



(a) Uncurated samples of FFHQ.

(b) Uncurated samples of AFHQv2-Cats.

(c) Uncurated samples of CompCars.

Figure S10: Uncurated samples on the FFHQ, AFHQv2-Cats, and CompCars. Camera poses are randomly chosen from
each training distribution. a and b show outputs of BallGAN. c is outputs from BallGAN-S.
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[49] Kaan Yücer, Alexander Sorkine-Hornung, Oliver Wang, and
Olga Sorkine-Hornung. Efficient 3d object segmentation
from densely sampled light fields with applications to 3d
reconstruction. ACM Transactions on Graphics (TOG),
35(3):1–15, 2016. 13

[50] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2

[51] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detec-
tion - how to effectively exploit shape and texture features.
In European Conference on Computer Vision, 2008. 14, 16



[52] Xuanmeng Zhang, Zhedong Zheng, Daiheng Gao, Bang
Zhang, Pan Pan, and Yi Yang. Multi-view consistent gen-
erative adversarial networks for 3d-aware image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18450–18459, 2022.
5

[53] Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian.
Cips-3d: A 3d-aware generator of gans based on
conditionally-independent pixel synthesis. arXiv preprint
arXiv:2110.09788, 2021. 1

[54] Qiran Zou, Yu Yang, Wing Yin Cheung, Chang Liu, and Xi-
angyang Ji. Ilsgan: Independent layer synthesis for unsuper-
vised foreground-background segmentation. arXiv preprint
arXiv:2211.13974, 2022. 2


